python绘画分段函数,编程计算分段函数python
这个程序用python怎么写?
x = int(input('请输入x的值:'))
创新互联建站是专业的江州网站建设公司,江州接单;提供网站设计、网站制作,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行江州网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!
if x5:
print('y =',x+5)
elif 5 = x 10:
print('y =',x*2)
elif x = 10:
print('y =',x**3)
python按钮如何连接到绘画图窗
第一,启动Python自带的集中开发环境IDLE,然后点击File--New File,并在脚本框中输入如下代码,用于创建窗口和按钮。
from tkinter import * # 从tkinter库中导入所有函数
window1=Tk() # 创建一个窗口
window1.title('test1') # 设置窗口标题
window1.geometry('500x500+100+100') # 设置窗口大小x和左顶距离+
def Jason(): # 创建一个函数
print('Come on,baby')
button1=Button(window1,text='点我啊',command=Jason) # 设置按钮属性
button1.pack() # 设置显示按钮
window1.mainloop() # 设置窗口循环显示
Python创建窗口按钮和绘制画布直线
第二,保存和运行上述脚本,得到如下窗口和窗口中的按钮“点我啊”。
Python创建窗口按钮和绘制画布直线
第三,点击“点我啊”按钮,会在IDLE中显示“Come on, baby”.
Python创建窗口按钮和绘制画布直线
第四,在IDLE中再次点击File--New File,并在脚本中输入如下代码,用于创建窗口画布和在画布上绘制直线。
from tkinter import *
window1=Tk()
window1.title('test2')
canvas1=Canvas(window1,width=500,height=500,bg='pink') # 设置画布
canvas1.pack() # 显示画布
# 利用create_line()在画布上绘制直线
canvas1.create_line(100,100,400,100,width=5,fill='red')
canvas1.create_line(100,200,400,200,width=15,fill='green')
canvas1.create_line(100,300,400,300,width=35,fill='blue')
window1.mainloop()
Python创建窗口按钮和绘制画布直线
第五,保存和运行上述脚本,可以得到如下图形,画布中绘制了“红 绿 蓝”三条线。
Python创建窗口按钮和绘制画布直线
python3.8.5shell怎么分段函数运算
这里的最好的分段输入的运算可以通过计算模式来完成虚拟手段
数字图像处理Python实现图像灰度变换、直方图均衡、均值滤波
import CV2
import copy
import numpy as np
import random
使用的是pycharm
因为最近看了《银翼杀手2049》,里面Joi实在是太好看了所以原图像就用Joi了
要求是灰度图像,所以第一步先把图像转化成灰度图像
# 读入原始图像
img = CV2.imread('joi.jpg')
# 灰度化处理
gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)
CV2.imwrite('img.png', gray)
第一个任务是利用分段函数增强灰度对比,我自己随便写了个函数大致是这样的
def chng(a):
if a 255/3:
b = a/2
elif a 255/3*2:
b = (a-255/3)*2 + 255/6
else:
b = (a-255/3*2)/2 + 255/6 +255/3*2
return b
rows = img.shape[0]
cols = img.shape[1]
cover = copy.deepcopy(gray)
for i in range(rows):
for j in range(cols):
cover[i][j] = chng(cover[i][j])
CV2.imwrite('cover.png', cover)
下一步是直方图均衡化
# histogram equalization
def hist_equal(img, z_max=255):
H, W = img.shape
# S is the total of pixels
S = H * W * 1.
out = img.copy()
sum_h = 0.
for i in range(1, 255):
ind = np.where(img == i)
sum_h += len(img[ind])
z_prime = z_max / S * sum_h
out[ind] = z_prime
out = out.astype(np.uint8)
return out
covereq = hist_equal(cover)
CV2.imwrite('covereq.png', covereq)
在实现滤波之前先添加高斯噪声和椒盐噪声(代码来源于网络)
不知道这个椒盐噪声的名字是谁起的感觉隔壁小孩都馋哭了
用到了random.gauss()
percentage是噪声占比
def GaussianNoise(src,means,sigma,percetage):
NoiseImg=src
NoiseNum=int(percetage*src.shape[0]*src.shape[1])
for i in range(NoiseNum):
randX=random.randint(0,src.shape[0]-1)
randY=random.randint(0,src.shape[1]-1)
NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)
if NoiseImg[randX, randY] 0:
NoiseImg[randX, randY]=0
elif NoiseImg[randX, randY]255:
NoiseImg[randX, randY]=255
return NoiseImg
def PepperandSalt(src,percetage):
NoiseImg=src
NoiseNum=int(percetage*src.shape[0]*src.shape[1])
for i in range(NoiseNum):
randX=random.randint(0,src.shape[0]-1)
randY=random.randint(0,src.shape[1]-1)
if random.randint(0,1)=0.5:
NoiseImg[randX,randY]=0
else:
NoiseImg[randX,randY]=255
return NoiseImg
covereqg = GaussianNoise(covereq, 2, 4, 0.8)
CV2.imwrite('covereqg.png', covereqg)
covereqps = PepperandSalt(covereq, 0.05)
CV2.imwrite('covereqps.png', covereqps)
下面开始均值滤波和中值滤波了
就以n x n为例,均值滤波就是用这n x n个像素点灰度值的平均值代替中心点,而中值就是中位数代替中心点,边界点周围补0;前两个函数的作用是算出这个点的灰度值,后两个是对整张图片进行
#均值滤波模板
def mean_filter(x, y, step, img):
sum_s = 0
for k in range(x-int(step/2), x+int(step/2)+1):
for m in range(y-int(step/2), y+int(step/2)+1):
if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]
or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:
sum_s += 0
else:
sum_s += img[k][m] / (step*step)
return sum_s
#中值滤波模板
def median_filter(x, y, step, img):
sum_s=[]
for k in range(x-int(step/2), x+int(step/2)+1):
for m in range(y-int(step/2), y+int(step/2)+1):
if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]
or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:
sum_s.append(0)
else:
sum_s.append(img[k][m])
sum_s.sort()
return sum_s[(int(step*step/2)+1)]
def median_filter_go(img, n):
img1 = copy.deepcopy(img)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
img1[i][j] = median_filter(i, j, n, img)
return img1
def mean_filter_go(img, n):
img1 = copy.deepcopy(img)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
img1[i][j] = mean_filter(i, j, n, img)
return img1
完整main代码如下:
if __name__ == "__main__":
# 读入原始图像
img = CV2.imread('joi.jpg')
# 灰度化处理
gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)
CV2.imwrite('img.png', gray)
rows = img.shape[0]
cols = img.shape[1]
cover = copy.deepcopy(gray)
for i in range(rows):
for j in range(cols):
cover[i][j] = chng(cover[i][j])
CV2.imwrite('cover.png', cover)
covereq = hist_equal(cover)
CV2.imwrite('covereq.png', covereq)
covereqg = GaussianNoise(covereq, 2, 4, 0.8)
CV2.imwrite('covereqg.png', covereqg)
covereqps = PepperandSalt(covereq, 0.05)
CV2.imwrite('covereqps.png', covereqps)
meanimg3 = mean_filter_go(covereqps, 3)
CV2.imwrite('medimg3.png', meanimg3)
meanimg5 = mean_filter_go(covereqps, 5)
CV2.imwrite('meanimg5.png', meanimg5)
meanimg7 = mean_filter_go(covereqps, 7)
CV2.imwrite('meanimg7.png', meanimg7)
medimg3 = median_filter_go(covereqg, 3)
CV2.imwrite('medimg3.png', medimg3)
medimg5 = median_filter_go(covereqg, 5)
CV2.imwrite('medimg5.png', medimg5)
medimg7 = median_filter_go(covereqg, 7)
CV2.imwrite('medimg7.png', medimg7)
medimg4 = median_filter_go(covereqps, 7)
CV2.imwrite('medimg4.png', medimg4)
python编程这个怎么弄?
分段函数的代码用python实现如下:
x=eval(input('输入x的值:'))
if x!=0:
y=1/(2*x-1)
else:
y=0
print(y)
如何用python matplotlab 画出一个分段函数
几个绘图的例子,来自API手册:
1、最简单的图:
代码:
[python] view plain copy print?
#!/usr/bin/env python
import matplotlib.pyplot as plt
plt.plot([10, 20, 30])
plt.xlabel('tiems')
plt.ylabel('numbers')
plt.show()
网页名称:python绘画分段函数,编程计算分段函数python
网页路径:http://scjbc.cn/article/phdpps.html