Vue的响应式更新比React快的原因
这篇文章主要为大家展示了Vue的响应式更新比React快的原因,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带大家一起来研究并学习一下“Vue的响应式更新比React快的原因”这篇文章吧。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册、虚拟空间、营销软件、网站建设、宜丰网站维护、网站推广。
为什么要使用Vue
Vue是一款友好的、多用途且高性能的JavaScript框架,使用vue可以创建可维护性和可测试性更强的代码库,Vue允许可以将一个网页分割成可复用的组件,每个组件都包含属于自己的HTML、CSS、JavaScript,以用来渲染网页中相应的地方,所以越来越多的前端开发者使用vue。
前言
我们都知道 Vue 对于响应式属性的更新,只会精确更新依赖收集的当前组件,而不会递归的去更新子组件,这也是它性能强大的原因之一。
例子
举例来说 这样的一个组件:
{{ msg }}
我们在触发 this.msg = 'Hello, Changed~'的时候,会触发组件的更新,视图的重新渲染。
但是
在以前的一段时间里,我曾经认为因为组件是一棵树,所以它的更新就是理所当然的深度遍历这棵树,进行递归更新。本篇就从源码的角度带你一起分析,Vue 是怎么做到精确更新的。
React的更新粒度
而 React 在类似的场景下是自顶向下的进行递归更新的,也就是说,React 中假如 ChildComponent 里还有十层嵌套子元素,那么所有层次都会递归的重新render(在不进行手动优化的情况下),这是性能上的灾难。(因此,React 创造了Fiber,创造了异步渲染,其实本质上是弥补被自己搞砸了的性能)。
他们能用收集依赖的这套体系吗?不能,因为他们遵从Immutable的设计思想,永远不在原对象上修改属性,那么基于Object.defineProperty 或 Proxy 的响应式依赖收集机制就无从下手了(你永远返回一个新的对象,我哪知道你修改了旧对象的哪部分?)
同时,由于没有响应式的收集依赖,React 只能递归的把所有子组件都重新 render一遍(除了memo和shouldComponentUpdate这些优化手段),然后再通过 diff算法 决定要更新哪部分的视图,这个递归的过程叫做 reconciler,听起来很酷,但是性能很灾难。
Vue的更新粒度
那么,Vue 这种精确的更新是怎么做的呢?其实每个组件都有自己的渲染 watcher,它掌管了当前组件的视图更新,但是并不会掌管 ChildComponent 的更新。
具体到源码中,是怎么样实现的呢?
在 patch 的过程中,当组件更新到ChildComponent的时候,会走到patchVnode,那么这个方法大致做了哪些事情呢?
patchVnode
执行 vnode 的 prepatch 钩子。
注意,只有 组件vnode 才会有 prepatch 这个生命周期,
这里会走到updateChildComponent方法,这个 child 具体指什么呢?
prepatch (oldVnode: MountedComponentVNode, vnode: MountedComponentVNode) { const options = vnode.componentOptions // 注意 这个child就是ChildComponent组件的 vm 实例,也就是咱们平常用的 this const child = vnode.componentInstance = oldVnode.componentInstance updateChildComponent( child, options.propsData, // updated props options.listeners, // updated listeners vnode, // new parent vnode options.children // new children ) },
其实看传入的参数也能猜到大概了,就是做了:
更新props(后续详细讲)
更新绑定事件
对于slot做一些更新(后续详细讲)
如果有子节点的话,对子节点进行 diff。
比如这样的场景:
- 1
- 2
- 3
要对于 ul 中的三个 li 子节点 vnode 利用 diff 算法来更新,本篇略过。
然后到此为止,patchVnode 就结束了,并没有像常规思维中的那样去递归的更新子组件树。
这也就说明了,Vue 的组件更新确实是精确到组件本身的。
如果是子组件呢?
假设列表是这样的:
那么在diff的过程中,只会对 component 上声明的 props、listeners等属性进行更新,而不会深入到组件内部进行更新。
注意:不会深入到组件内部进行更新!(划重点,这也是本文所说的更新粒度的关键)
props的更新如何触发重渲染?
那么有同学可能要问了,如果不会递归的去对子组件更新,如果我们把 msg 这个响应式元素通过props传给 ChildComponent,此时它怎么更新呢?
首先,在组件初始化 props的时候,会走到 initProps 方法。
const props = vm._props = {} for (const key in propsOptions) { // 经过一系列验证props合法性的流程后 const value = validateProp(key, propsOptions, propsData, vm) // props中的字段也被定义成响应式了 defineReactive(props, key, value) }
至此为止,是实现了对于 _props 上字段变更的劫持。也就是变成了响应式数据,后面我们做类似于 _props.msg = 'Changed' 的操作时(当然我们不会这样做,Vue内部会做),就会触发视图更新。
其实,msg 在传给子组件的时候,会被保存在子组件实例的 _props 上,并且被定义成了响应式属性,而子组件的模板中对于 msg 的访问其实是被代理到 _props.msg 上去的,所以自然也能精确的收集到依赖,只要 ChildComponent 在模板里也读取了这个属性。
这里要注意一个细节,其实父组件发生重渲染的时候,是会重新计算子组件的 props 的,具体是在 updateChildComponent 中的:
// update props if (propsData && vm.$options.props) { toggleObserving(false) // 注意props被指向了 _props const props = vm._props const propKeys = vm.$options._propKeys || [] for (let i = 0; i < propKeys.length; i++) { const key = propKeys[i] const propOptions: any = vm.$options.props // wtf flow? // 就是这句话,触发了对于 _props.msg 的依赖更新。 props[key] = validateProp(key, propOptions, propsData, vm) } toggleObserving(true) // keep a copy of raw propsData vm.$options.propsData = propsData }
那么,由于上面注释标明的那段代码,msg 的变化通过 _props 的响应式能力,也让子组件重新渲染了,到目前为止,都只有真的用到了 msg 的组件被重新渲染了。
正如官网 api 文档中所说:
vm.$forceUpdate:迫使 Vue 实例重新渲染。注意它仅仅影响实例本身和插入插槽内容的子组件,而不是所有子组件。
—— vm-forceUpdate文档
我们需要知道一个小知识点,vm.$forceUpdate 本质上就是触发了渲染watcher的重新执行,和你去修改一个响应式的属性触发更新的原理是一模一样的,它只是帮你调用了 vm._watcher.update()(只是提供给你了一个便捷的api,在设计模式中叫做门面模式)
slot是怎么更新的?
注意这里也提到了一个细节,也就是 插入插槽内容的子组件:
举例来说
假设我们有父组件parent-comp:
{{ msg }}
子组件 slot-comp:
组件中含有 slot的更新 ,是属于比较特殊的场景。
这里的 msg 属性在进行依赖收集的时候,收集到的是 parent-comp 的`渲染watcher。(至于为什么,你看一下它所在的渲染上下文就懂了。)
那么我们想象 msg 此时更新了,
{{ msg }}
这个组件在更新的时候,遇到了一个子组件 slot-comp,按照 Vue 的精确更新策略来说,子组件是不会重新渲染的。
但是在源码内部,它做了一个判断,在执行 slot-comp 的 prepatch 这个hook的时候,会执行 updateChildComponent 逻辑,在这个函数内部会发现它有 slot 元素。
prepatch (oldVnode: MountedComponentVNode, vnode: MountedComponentVNode) { const options = vnode.componentOptions // 注意 这个child就是 slot-comp 组件的 vm 实例,也就是咱们平常用的 this const child = vnode.componentInstance = oldVnode.componentInstance updateChildComponent( child, options.propsData, // updated props options.listeners, // updated listeners vnode, // new parent vnode options.children // new children ) },
在 updateChildComponent 内部
const hasChildren = !!( // 这玩意就是 slot 元素 renderChildren || // has new static slots vm.$options._renderChildren || // has old static slots parentVnode.data.scopedSlots || // has new scoped slots vm.$scopedSlots !== emptyObject // has old scoped slots )
然后下面走一个判断
if (hasChildren) { vm.$slots = resolveSlots(renderChildren, parentVnode.context) vm.$forceUpdate() }
这里调用了 slot-comp 组件vm实例上的 $forceUpdate,那么它所触发的渲染watcher就是属于slot-comp的渲染watcher了。
总结来说,这次 msg 的更新不光触发了 parent-comp 的重渲染,也进一步的触发了拥有slot的子组件 slot-comp 的重渲染。
它也只是触发了两层渲染,如果 slot-comp 内部又渲染了其他组件 slot-child,那么此时它是不会进行递归更新的。(只要 slot-child 组件不要再有 slot 了)。
比起 React 的递归更新,是不是还是好上很多呢?
赠礼 一个小issue
有人给 Vue 2.4.2 版本提了一个issue,在下面的场景下会出现 bug。
let Child = { name: "child", template: '{{ localMsg }}', data: function() { return { localMsg: this.msg }; }, props: { msg: String }, methods: { change() { this.$emit("update:msg", "world"); } } }; new Vue({ el: "#app", template: '', beforeUpdate() { alert("update twice"); }, data() { return { msg: "hello" }; }, components: { Child } });
具体的表现是点击 click按钮,会 alert 出两次 update twice。 这是由于子组件在执行 data 这个函数初始化组件的数据时,会错误的再收集一遍 Dep.target (也就是渲染watcher)。
由于数据初始化的时机是 beforeCreated -> created 之间,此时由于还没有进入子组件的渲染阶段, Dep.target 还是父组件的渲染watcher。
这就导致重复收集依赖,重复触发同样的更新
怎么解决的呢?很简单,在执行 data 函数的前后,把 Dep.target 先设置为 null 即可,在 finally 中再恢复,这样响应式数据就没办法收集到依赖了。
export function getData (data: Function, vm: Component): any { const prevTarget = Dep.target + Dep.target = null try { return data.call(vm, vm) } catch (e) { handleError(e, vm, `data()`) return {} + } finally { + Dep.target = prevTarget } }
以上就是关于“Vue的响应式更新比React快的原因”的内容,如果改文章对你有所帮助并觉得写得不错,劳请分享给你的好友一起学习新知识,若想了解更多相关知识内容,请多多关注创新互联行业资讯频道。
网页名称:Vue的响应式更新比React快的原因
文章URL:http://scjbc.cn/article/jcgdcg.html