go语言随机提取,go生成随机字符串
golang 读写二进制文件
我们需要对一些文本进行"明文加密",何为"明文加密"?
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册、虚拟主机、营销软件、网站建设、商城网站维护、网站推广。
从一些错乱的数据中,提取我们想要的数据.
生成错乱的数据(可以随机生成)
只需从上面的字符串提取数字即可,45.89.0.8
这里只是举个简单例子
这样就会该go文件同级目录生成bin文件
并未使用binary.Read()方法
读取到的文本
再根据自己的规则去提取该字符中你想要的数据即可.
golang map的元素遍历为什么是随机的
Map是随机存储的,好像是按内存块的大小放数据。这样存储效率高。但检索效率低。List是会重新划分存储空间,保证连续存储,存的效率低,检索效率高。大概是这个意思,具体的,准确、详细的自己google下。
hashCode() 方法得到其 hashCode 值——每个 Java 对象都有 hashCode() 方法,都可通过该方法获得它的 hashCode 值。得到这个对象的 hashCode 值之后,系统会根据该 hashCode 值来决定该元素的存储位置。
设置了首尾倒置函数,也会出现这种类似情况。还有,你要注意:map中不允许存在重复的键名,你也可以使用其他的方式来实现,比如List,排序的话还得靠你自己来实现了。
golang map源码浅析
golang 中 map的实现结构为: 哈希表 + 链表。 其中链表,作用是当发生hash冲突时,拉链法生成的结点。
可以看到, []bmap 是一个hash table, 每一个 bmap是我们常说的“桶”。 经过hash 函数计算出来相同的hash值, 放到相同的桶中。 一个 bmap中可以存放 8个 元素, 如果多出8个,则生成新的结点,尾接到队尾。
以上是只是静态文件 src/runtime/map.go 中的定义。 实际上编译期间会给它加料 ,动态地创建一个新的结构:
上图就是 bmap的内存模型, HOB Hash 指的就是 top hash。 注意到 key 和 value 是各自放在一起的,并不是 key/value/key/value/... 这样的形式。源码里说明这样的好处是在某些情况下可以省略掉 padding 字段,节省内存空间。
每个 bmap设计成 最多只能放 8 个 key-value 对 ,如果有第 9 个 key-value 落入当前的 bmap,那就需要再构建一个 bmap,通过 overflow 指针连接起来。
map创建方法:
我们实际上是通过调用的 makemap ,来创建map的。实际工作只是初始化了hmap中的各种字段,如:设置B的大小, 设置hash 种子 hash 0.
注意 :
makemap 返回是*hmap 指针, 即 map 是引用对象, 对map的操作会影响到结构体内部 。
使用方式
对应的是下面两种方法
map的key的类型,实现了自己的hash 方式。每种类型实现hash函数方式不一样。
key 经过哈希计算后得到hash值,共 64 个 bit 位。 其中后B 个bit位置, 用来定位当前元素落在哪一个桶里, 高8个bit 为当前 hash 值的top hash。 实际上定位key的过程是一个双重循环的过程, 外层循环遍历 所有的overflow, 内层循环遍历 当前bmap 中的 8个元素 。
举例说明: 如果当前 B 的值为 5, 那么buckets 的长度 为 2^5 = 32。假设有个key 经过hash函数计算后,得到的hash结果为:
外层遍历bucket 中的链表
内层循环遍历 bmap中的8个 cell
建议先不看此部分内容,看完后续 修改 map中元素 - 扩容 操作后 再回头看此部分内容。
扩容前的数据:
等量扩容后的数据:
等量扩容后,查找方式和原本相同, 不多做赘述。
两倍扩容后的数据
两倍扩容后,oldbuckets 的元素,可能被分配成了两部分。查找顺序如下:
此处只分析 mapaccess1 ,。 mapaccess2 相比 mapaccess1 多添加了是否找到的bool值, 有兴趣可自行看一下。
使用方式:
步骤如下:
扩容条件 :
扩容的标识 : h.oldbuckets != nil
假设当前定位到了新的buckets的3号桶中,首先会判断oldbuckets中的对应的桶有没有被搬迁过。 如果搬迁过了,不需要看原来的桶了,直接遍历新的buckets的3号桶。
扩容前:
等量扩容结果
双倍扩容会将old buckets上的元素分配到x, y两个部key 1 B == 0 分配到x部分,key 1 B == 1 分配到y部分
注意: 当前只对双倍扩容描述, 等量扩容只是重新填充了一下元素, 相对位置没有改变。
假设当前map 的B == 5,原本元素经过hash函数计算的 hash 值为:
因为双倍扩容之后 B = B + 1,此时B == 6。key 1 B == 1, 即 当前元素rehash到高位,新buckets中 y 部分. 否则 key 1 B == 0 则rehash到低位,即x 部分。
使用方式:
可以看到,每一遍历生成迭代器的时候,会随机选取一个bucket 以及 一个cell开始。 从前往后遍历,再次遍历到起始位置时,遍历完成。
golang连续生成随机数
const NUM int = 100
for i := 0; i NUM; i += 1 {
rand.Seed(int64(i))
fmt.Printf("%d\t", rand.Int63n(int64(NUM)))
}
其实在循环里面这点时间间隔,纳秒也是跟不上的。
还有,你用sleep的方法肯定是不能接受的!!!
GO GOLANG 生成范围随机数
math/rand 中的所有整数函数都生成非负数.
示例 main.go
执行
同理,需要int64 int32类型的随机数只要修改随机函数
但是需要注意 math/rand 几个函数的取值区间!如Intn的范围[0, n)。[0,20),20会取不到
我自己的需求这样写已足够
【golang详解】go语言GMP(GPM)原理和调度
Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。
首先介绍一下GMP什么意思:
G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。
M ---------- thread内核级线程,所有的G都要放在M上才能运行。
P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。
Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行
模型图:
避免频繁的创建、销毁线程,而是对线程的复用。
1)work stealing机制
当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。
2)hand off机制
当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:
如果有空闲的P,则获取一个P,继续执行G0。
如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。
如下图
GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行
在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。
具体可以去看另一篇文章
【Golang详解】go语言调度机制 抢占式调度
当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。
协程经历过程
我们创建一个协程 go func()经历过程如下图:
说明:
这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。
G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;
一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G
上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。
work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。
如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。
Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:
用户态阻塞/唤醒
当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。
系统调用阻塞
当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。
队列轮转
可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
M0
M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了
G0
G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0
一个G由于调度被中断,此后如何恢复?
中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。
我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码
参考: ()
()
新闻名称:go语言随机提取,go生成随机字符串
文章地址:http://scjbc.cn/article/heiiog.html