Numpy中ravel()和flatten()的区别是什么

这期内容当中小编将会给大家带来有关Numpy中ravel()和flatten()的区别是什么,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

创新互联公司是一家集网站建设,鹤壁企业网站建设,鹤壁品牌网站建设,网站定制,鹤壁网站建设报价,网络营销,网络优化,鹤壁网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

在Numpy中经常使用到的操作由扁平化操作,Numpy提供了两个函数进行此操作,他们的功能相同,但在内存上有很大的不同.

先来看这两个函数的使用:

from numpy import *
  
a = arange(12).reshape(3,4)
print(a)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]]
print(a.ravel())
# [ 0  1  2  3  4  5  6  7  8  9 10 11]
print(a.flatten())
# [ 0  1  2  3  4  5  6  7  8  9 10 11]

可以看到这两个函数实现的功能一样,但我们在平时使用的时候flatten()更为合适.在使用过程中flatten()分配了新的内存,但ravel()返回的是一个数组的视图.视图是数组的引用(说引用不太恰当,因为原数组和ravel()返回后的数组的地址并不一样),在使用过程中应该注意避免在修改视图时影响原本的数组.这是什么意思咧,我们通过代码来具体解释:

from numpy import *

a = arange(12).reshape(3,4)
print(a)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]]

# 创建一个和a相同内容的数组b
b = a.copy()
c = a.ravel()
d = b.flatten()
# 输出c和d数组
print(c)
# [ 0  1  2  3  4  5  6  7  8  9 10 11]
print(d)
# [ 0  1  2  3  4  5  6  7  8  9 10 11]
# 可以看到c和d数组都是扁平化后的数组,具有相同的内容

print(a is c)
# False
print(b is d)
# False
# 可以看到以上a,b,c,d是四个不同的对象

# 但因为c是a的一种展示方式,虽然他们是不同的对象,但在修改c的时候,a中相应的数也改变了
c[1] = 99
d[1] = 99
print(a)
# [[ 0 99  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]]
print(b)
# [[ 0  1  2  3]
#  [ 4  5  6  7]
#  [ 8  9 10 11]]
print(c)
# [ 0 99  2  3  4  5  6  7  8  9 10 11]
print(d)
# [ 0 99  2  3  4  5  6  7  8  9 10 11]

上述就是小编为大家分享的Numpy中ravel()和flatten()的区别是什么了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注创新互联行业资讯频道。


当前题目:Numpy中ravel()和flatten()的区别是什么
URL分享:http://scjbc.cn/article/ggseij.html

其他资讯