python使用RNN实现文本分类-创新互联
本文实例为大家分享了使用RNN进行文本分类,python代码实现,供大家参考,具体内容如下
1、本博客项目由来是oxford 的nlp 深度学习课程第三周作业,作业要求使用LSTM进行文本分类。和上一篇CNN文本分类类似,本此代码风格也是仿照sklearn风格,三步走形式(模型实体化,模型训练和模型预测)但因为训练时间较久不知道什么时候训练比较理想,因此在次基础上加入了继续训练的功能。
2、构造文本分类的rnn类,(保存文件为ClassifierRNN.py)
2.1 相应配置参数因为较为繁琐,不利于阅读,因此仿照tensorflow源码形式,将代码分成 网络配置参数 nn_config 和计算配置参数: calc_config,也相应声明了其对应的类:NN_config,CALC_config。
2.2 声明 ClassifierRNN类,该类的主要函数有:(init, build_inputs, build_rnns, build_loss, build_optimizer, random_batches,fit, load_model, predict_accuracy, predict),代码如下:
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os import time class NN_config(object): def __init__(self,num_seqs=1000,num_steps=10,num_units=128,num_classes = 8,\ num_layers = 1,embedding_size=100,vocab_size = 10000,\ use_embeddings=False,embedding_init=None): self.num_seqs = num_seqs self.num_steps = num_steps self.num_units = num_units self.num_classes = num_classes self.num_layers = num_layers self.vocab_size = vocab_size self.embedding_size = embedding_size self.use_embeddings = use_embeddings self.embedding_init = embedding_init class CALC_config(object): def __init__(self,batch_size=64,num_epoches = 20,learning_rate = 1.0e-3, \ keep_prob=0.5,show_every_steps = 10,save_every_steps=100): self.batch_size = batch_size self.num_epoches = num_epoches self.learning_rate = learning_rate self.keep_prob = keep_prob self.show_every_steps = show_every_steps self.save_every_steps = save_every_steps class ClassifierRNN(object): def __init__(self, nn_config, calc_config): # assign revalent parameters self.num_seqs = nn_config.num_seqs self.num_steps = nn_config.num_steps self.num_units = nn_config.num_units self.num_layers = nn_config.num_layers self.num_classes = nn_config.num_classes self.embedding_size = nn_config.embedding_size self.vocab_size = nn_config.vocab_size self.use_embeddings = nn_config.use_embeddings self.embedding_init = nn_config.embedding_init # assign calc ravalant values self.batch_size = calc_config.batch_size self.num_epoches = calc_config.num_epoches self.learning_rate = calc_config.learning_rate self.train_keep_prob= calc_config.keep_prob self.show_every_steps = calc_config.show_every_steps self.save_every_steps = calc_config.save_every_steps # create networks models tf.reset_default_graph() self.build_inputs() self.build_rnns() self.build_loss() self.build_optimizer() self.saver = tf.train.Saver() def build_inputs(self): with tf.name_scope('inputs'): self.inputs = tf.placeholder(tf.int32, shape=[None,self.num_seqs],\ name='inputs') self.targets = tf.placeholder(tf.int32, shape=[None, self.num_classes],\ name='classes') self.keep_prob = tf.placeholder(tf.float32,name='keep_prob') self.embedding_ph = tf.placeholder(tf.float32, name='embedding_ph') if self.use_embeddings == False: self.embeddings = tf.Variable(tf.random_uniform([self.vocab_size,\ self.embedding_size],-0.1,0.1),name='embedding_flase') self.rnn_inputs = tf.nn.embedding_lookup(self.embeddings,self.inputs) else: embeddings = tf.Variable(tf.constant(0.0,shape=[self.vocab_size,self.embedding_size]),\ trainable=False,name='embeddings_true') self.embeddings = embeddings.assign(self.embedding_ph) self.rnn_inputs = tf.nn.embedding_lookup(self.embeddings,self.inputs) print('self.rnn_inputs.shape:',self.rnn_inputs.shape) def build_rnns(self): def get_a_cell(num_units,keep_prob): rnn_cell = tf.contrib.rnn.BasicLSTMCell(num_units=num_units) drop = tf.contrib.rnn.DropoutWrapper(rnn_cell, output_keep_prob=keep_prob) return drop with tf.name_scope('rnns'): self.cell = tf.contrib.rnn.MultiRNNCell([get_a_cell(self.num_units,self.keep_prob) for _ in range(self.num_layers)]) self.initial_state = self.cell.zero_state(self.batch_size,tf.float32) self.outputs, self.final_state = tf.nn.dynamic_rnn(self.cell,tf.cast(self.rnn_inputs,tf.float32),\ initial_state = self.initial_state ) print('rnn_outputs',self.outputs.shape) def build_loss(self): with tf.name_scope('loss'): self.logits = tf.contrib.layers.fully_connected(inputs = tf.reduce_mean(self.outputs, axis=1), \ num_outputs = self.num_classes, activation_fn = None) print('self.logits.shape:',self.logits.shape) self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.logits,\ labels = self.targets)) print('self.cost.shape',self.cost.shape) self.predictions = self.logits self.correct_predictions = tf.equal(tf.argmax(self.predictions, axis=1), tf.argmax(self.targets, axis=1)) self.accuracy = tf.reduce_mean(tf.cast(self.correct_predictions,tf.float32)) print(self.cost.shape) print(self.correct_predictions.shape) def build_optimizer(self): with tf.name_scope('optimizer'): self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.cost) def random_batches(self,data,shuffle=True): data = np.array(data) data_size = len(data) num_batches_per_epoch = int(data_size/self.batch_size) #del data for epoch in range(self.num_epoches): if shuffle : shuffle_index = np.random.permutation(np.arange(data_size)) shuffled_data = data[shuffle_index] else: shuffled_data = data for batch_num in range(num_batches_per_epoch): start = batch_num * self.batch_size end = min(start + self.batch_size,data_size) yield shuffled_data[start:end] def fit(self,data,restart=False): if restart : self.load_model() else: self.session = tf.Session() self.session.run(tf.global_variables_initializer()) with self.session as sess: step = 0 accuracy_list = [] # model saving save_path = os.path.abspath(os.path.join(os.path.curdir, 'models')) if not os.path.exists(save_path): os.makedirs(save_path) plt.ion() #new_state = sess.run(self.initial_state) new_state = sess.run(self.initial_state) batches = self.random_batches(data) for batch in batches: x,y = zip(*batch) x = np.array(x) y = np.array(y) print(len(x),len(y),step) step += 1 start = time.time() if self.use_embeddings == False: feed = {self.inputs :x, self.targets:y, self.keep_prob : self.train_keep_prob, self.initial_state: new_state} else: feed = {self.inputs :x, self.targets:y, self.keep_prob : self.train_keep_prob, self.initial_state: new_state, self.embedding_ph: self.embedding_init} batch_loss, new_state, batch_accuracy , _ = sess.run([self.cost,self.final_state,\ self.accuracy, self.optimizer],feed_dict = feed) end = time.time() accuracy_list.append(batch_accuracy) # control the print lines if step%self.show_every_steps == 0: print('steps/epoch:{}/{}...'.format(step,self.num_epoches), 'loss:{:.4f}...'.format(batch_loss), '{:.4f} sec/batch'.format((end - start)), 'batch_Accuracy:{:.4f}...'.format(batch_accuracy) ) plt.plot(accuracy_list) plt.pause(0.5) if step%self.save_every_steps == 0: self.saver.save(sess,os.path.join(save_path, 'model') ,global_step = step) self.saver.save(sess, os.path.join(save_path, 'model'), global_step=step) def load_model(self, start_path=None): if start_path == None: model_path = os.path.abspath(os.path.join(os.path.curdir,"models")) ckpt = tf.train.get_checkpoint_state(model_path) path = ckpt.model_checkpoint_path print("this is the start path of model:",path) self.session = tf.Session() self.saver.restore(self.session, path) print("Restored model parameters is complete!") else: self.session = tf.Session() self.saver.restore(self.session,start_path) print("Restored model parameters is complete!") def predict_accuracy(self,data,test=True): # loading_model self.load_model() sess = self.session iterations = 0 accuracy_list = [] predictions = [] epoch_temp = self.num_epoches self.num_epoches = 1 batches = self.random_batches(data,shuffle=False) for batch in batches: iterations += 1 x_inputs, y_inputs = zip(*batch) x_inputs = np.array(x_inputs) y_inputs = np.array(y_inputs) if self.use_embeddings == False: feed = {self.inputs: x_inputs, self.targets: y_inputs, self.keep_prob: 1.0} else: feed = {self.inputs: x_inputs, self.targets: y_inputs, self.keep_prob: 1.0, self.embedding_ph: self.embedding_init} to_train = [self.cost, self.final_state, self.predictions,self.accuracy] batch_loss,new_state,batch_pred,batch_accuracy = sess.run(to_train, feed_dict = feed) accuracy_list.append(np.mean(batch_accuracy)) predictions.append(batch_pred) print('The trainning step is {0}'.format(iterations),\ 'trainning_accuracy: {:.3f}'.format(accuracy_list[-1])) accuracy = np.mean(accuracy_list) predictions = [list(pred) for pred in predictions] predictions = [p for pred in predictions for p in pred] predictions = np.array(predictions) self.num_epoches = epoch_temp if test : return predictions, accuracy else: return accuracy def predict(self, data): # load_model self.load_model() sess = self.session iterations = 0 predictionss = [] epoch_temp = self.num_epoches self.num_epoches = 1 batches = self.random_batches(data) for batch in batches: x_inputs = batch if self.use_embeddings == False: feed = {self.inputs : x_inputs, self.keep_prob:1.0} else: feed = {self.inputs : x_inputs, self.keep_prob:1.0, self.embedding_ph: self.embedding_init} batch_pred = sess.run([self.predictions],feed_dict=feed) predictions.append(batch_pred) predictions = [list(pred) for pred in predictions] predictions = [p for pred in predictions for p in pred] predictions = np.array(predictions) return predictions
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
标题名称:python使用RNN实现文本分类-创新互联
文章转载:http://scjbc.cn/article/edcps.html