go语言model存储 go语言struct
Go语言的开源项目
1.Docker项目
成都创新互联是一家集网站建设,彝良企业网站建设,彝良品牌网站建设,网站定制,彝良网站建设报价,网络营销,网络优化,彝良网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。
网址为 。
介绍:Docker是一种操作系统层面的虚拟化技术,可以在操作系统和应用程序之间进行隔离,也可以称之为容器。Docker可以在一台物理服务器上快速运行一个或多个实例。例如,启动一个Cent OS操作系统,并在其内部命令行执行指令后结束,整个过程就像自己在操作系统一样高效。
2.golang项目
网址为 。
介绍:Go语言的早期源码使用C语言和汇编语言写成。从Go 1.5版本自举后,完全使用Go语言自身进行编写。Go语言的源码对了解Go语言的底层调度有极大的参考意义,建议希望对Go语言有深入了解的读者读一读。
3.Kubernetes项目
网址为 。
介绍:Google公司开发的构建于Docker之上的容器调度服务,用户可以通过Kubernetes集群进行云端容器集群管理。
4.etcd项目
网址为 。
介绍:一款分布式、可靠的KV存储系统,可以快速进行云配置。
5.beego项目
网址为 。
介绍:beego是一个类似Python的Tornado框架,采用了RESTFul的设计思路,使用Go语言编写的一个极轻量级、高可伸缩性和高性能的Web应用框架。
6.martini项目
网址为 。
介绍:一款快速构建模块化的Web应用的Web框架。
7.codis项目
网址为 Labs/codis。
介绍:国产的优秀分布式Redis解决方案。
8.delve项目
网址为 。
介绍:Go语言强大的调试器,被很多集成环境和编辑器整合。
【golang详解】go语言GMP(GPM)原理和调度
Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。
首先介绍一下GMP什么意思:
G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。
M ---------- thread内核级线程,所有的G都要放在M上才能运行。
P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。
Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行
模型图:
避免频繁的创建、销毁线程,而是对线程的复用。
1)work stealing机制
当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。
2)hand off机制
当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:
如果有空闲的P,则获取一个P,继续执行G0。
如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。
如下图
GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行
在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。
具体可以去看另一篇文章
【Golang详解】go语言调度机制 抢占式调度
当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。
协程经历过程
我们创建一个协程 go func()经历过程如下图:
说明:
这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。
G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;
一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G
上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。
work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。
如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。
Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:
用户态阻塞/唤醒
当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。
系统调用阻塞
当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。
队列轮转
可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
M0
M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了
G0
G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0
一个G由于调度被中断,此后如何恢复?
中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。
我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码
参考: ()
()
Go语言中的字节序
Go中的binary包实现了简单的数字与字节序列的转换以及变长值的编解码
package main
import ( "fmt" "bytes" "encoding/binary" ) func main(){ n := 0x12345678 bytesBuffer := bytes.NewBuffer([]byte{}) //BigEndian 大端顺序存储 LittleEndian小端顺序存储 binary.Write(bytesBuffer, binary.BigEndian, int32(n)) data:=bytesBuffer.Bytes() fmt.Printf("[0]: %#x addr:%#x\n",data[0],data[0]) fmt.Printf("[0]: %#x addr:%#x\n",data[1],data[1]) fmt.Printf("[0]: %#x addr:%#x\n",data[2],data[2]) fmt.Printf("[0]: %#x addr:%#x\n",data[3],data[3]) }
输出
[0]: 0x12 addr:0xc042010248 [1]: 0x34 addr:0xc042010249 [2]: 0x56 addr:0xc04201024a [3]: 0x78 addr:0xc04201024b
也可以使用下面的方式
n := 0x12345678 var data []byte = make([]byte,4) //操作的都是无符号整型 binary.BigEndian.PutUint32(data,uint32(n))
可以使用下面的方式判断当前系统的字节序类型
const INT_SIZE int = int(unsafe.Sizeof(0))
//判断我们系统中的字节序类型 func systemEdian() { var i int = 0x1 bs := (*[INT_SIZE]byte)(unsafe.Pointer(i)) if bs[0] == 0 { fmt.Println("system edian is little endian") } else { fmt.Println("system edian is big endian") } }
带你踩gorm v2的坑-模型关系
最近在学习golang, 使用gin框架搭了个网站,于是在网上找golang的orm
找到gorm使用了两天突然发现v2已经发布了,看更新日志说提高了性能修复了很多bug,于是赶紧换了v2,以下纪录我使用gorm v2 踩过的坑
我使用gorm连接的是mysql, 在使用automigrate根据关系模型创建表的时候总是创建失败
首先看官方文档,简单的关联关系,其实理解了官方案例问题就不大.
但是在复杂关系的时候创建就会报错(无法添加外键约束等).这里我提供我自己实验出的一种解决方式:
以我自己的项目为例,假设有User(用户),House(房间),Order(订单)三个表, 无关的属性已经去掉
pretype User struct {
gorm.Model // gorm自带, 会提供ID, craeteAt, updateAt, deleteAt四个属性
Property1 int
Property2 string
}
type House struct {
gorm.Model
Property1 int
Property2 string
}
type Order struct {
gorm.Model
Property1 int
Property2 string
精简了很多属性和关联不知道还会不会报错.
创建的时候先屏蔽所有的外键关系然后创建表, 注释之后如下
pretype User struct {
gorm.Model // gorm自带, 会提供ID, craeteAt, updateAt, deleteAt四个属性
Property1 int
Property2 string
}
type House struct {
gorm.Model
Property1 int
Property2 string
}
type Order struct {
gorm.Model
Property1 int
Property2 string
相当于每个表都只剩下了gorm.Model和两个Property, 请注意在Order表中我注释掉了UserID,HouseID
因为这两个属性虽然是基础类型属性,但是UserID是user表的外键, HouseID是下面House表的外键, 所以说这两个属性也要注释掉
然后你就可以执行db.AutoMigrate(User{},House{},Order{}) 来自动迁移创建你的表;
创建完成之后放开User表的Houses和House表的Tenants, 然后再次执行自动迁移, 就可以创建users表和houses表的多对多关联表;
然后再放开Order的HouseID 和House, 就可以创建orders表对houses表的一对一关系约束;
最后放开User的Orders和Order的UserID, 就可以创建users表对orders表的一对多关系约束;
这样分步创建就不会报错,如果报错的话请检查你的模型是否有问题, 多参考官方给出的案例
还有官网给出的项目 gin-vue-admin 也可以参考
新闻标题:go语言model存储 go语言struct
本文URL:http://scjbc.cn/article/dophdcd.html