GIS技术学院风包包夏季 gis大学
关于GIS技术的学习
学习gis,我建议看书可以看看遥感导论,基本概念知道后,就可以开始搞软件了,毕竟gis就是软件,常用的,arcgis,ERDAS,mapgis,mapinfor等都是需要了解的,然后可以去ESRI中文社区等地方看看学习,关于开发的server和engine的资料还是很多的。
10年积累的成都做网站、成都网站建设经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有红塔免费网站建设让你可以放心的选择与我们合作。
ps:从软件转这块就是轻松啊,有了编程的基础再看这些就不难了,但是像我们学gis想搞开发,痛苦啊,祝你好运~!
软件开发技术路线
应用 GIS 系统多种多样,形式各异,但从开发实现的角度考虑,基本上可以概括为三种形式: 独立开发、单纯二次开发、集成二次开发。
独立开发的优点在于无须依赖任何商业 GIS 工具软件,这样一来不仅减少了开发成本,而且同样的算法设计与代码运行可以运用于以后的类似的应用系统开发中,这样可以为许多最终用户节省购买 GIS 工具软件的费用,但进行这种方式的开发一方面要求开发者具有深厚的计算机程序设计功底,另一方面对于大多数开发者来说,能力、时间、财力方面的限制使其开发出来的产品很难在功能设计和使用上与商业化 GIS 工具软件相匹敌,而且在购买 GIS 工具软件上省下来的钱可能还抵不上开发者在开发过程中绞尽脑汁所花的代价,因此这种开发方式仅为少数开发者使用。
单纯二次开发由于是借助于 GIS 工具软件提供的宏语言进行的,省时省心,但不管是ArcView 提供的 Avenue,还是 MapInfo 提供的 MapBasic,作为编程语言都只能算是二流的,用它们来开发应用程序仍不尽如人意,效率低下,且在界面设计上相对单一,难于发挥开发者的想象力以及不同 GIS 应用的需要。
集成二次开发既可以充分利用可视化软件开发工具的高效方便的编程功能,又可以充分利用地理信息系统工具软件完备的空间数据可视化分析处理功能,集二者之所长,不仅能大大提高应用系统的开发效率,而且使用面向对象的可视化软件开发工具开发出来的应用程序具有良好的外观、完善的功能,且可靠性好、便于维护。尤其是使用 COM 技术利用 GIS 功能组件进行集成开发更能表现出这些优势。
综上所述,集成二次开发正成为应用 GIS 系统开发的主流方向。GIS 工具软件一般是有计算机专业技术人员组成的科研集体完成开发的,系统的设计技术较高,而实用 GIS 系统一般是非计算机专业人员开发、用于特定行业或特定地区的软件系统,具有较强的应用专业性或区域性。从某种意义上来讲,GIS 工具和应用 GIS 系统在功能上没有本质的差别,主要体现在通用性和专用性上,既从通用界面到专用界面,从通用模型到专业模型。地理信息系统软件设计技术较高,在应用 GIS 系统开发上重复开发 GIS 技术的基础功能无疑会造成人力和财力的巨大浪费,而且对非计算机专业的技术人员来讲也存在有巨大的难度。在地理信息系统工具上开发应用 GIS 系统无疑是一条捷径,不仅可以节省软件开发的人力、物力、财力,而且也大大缩短了软件开发周期,提高了应用系统的整体水平。
近几年来,GIS 工具得到了快速发展,而且日益成熟,有些软件已经提供了功能强大的二次开发功能,为迅速建立应用 GIS 系统奠定了基础。任何一个地理信息系统应包括如下几方面的内容: 数据输入、数据编辑、数据查询、空间分析模型、信息输出。在 GIS 工具上进行应用 GIS 系统的二次开发主要完成如下几方面的工作: 专业化界面开发,使通用GIS 工具转化为专用 GIS 系统; 高层次的专业应用模型开发与模型管理,完成特定行业要求的空间模型运算。
本系统软件开发技术路线为:
( 1) 以 Windows 98 为操作系统,以 MapGIS 为 GIS 支撑环境平台。
( 2) 使用 MapGIS 的 API 函数进行二次开发,以 Visual C + + 为开发编译工具,重新开发 C + + 类库,实现系统界面风格上的一致。
( 3) 在系统开发中要充分利用现有的软件开发成果,以缩短系统的开发周期和可行性,严格按照软件开发规范开展工作。
( 4) 引入成熟的算法与源代码。
( 5) 注重软件的测试工作,将软件问题消灭于萌芽之中。
运用地理信息系统新技术进行滑坡稳定性三维评价和滑动过程模拟研究
译自 Environment Geo1ogy,2003(43):503~512。
Mowen Xie1Tetsuro Esaki1Guoyun Zhou1Yasuhiro Mitani1著
张晓娟2译 罗靖筠2校 朱汝烈2复校
(1Environmental System Institute,Kyushu University,Hakozaki 6-10-1,Higashi Ku,Fukuoka,Japan;2中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)
【摘要】本文在传统的边坡稳定性三维分析模型的基础上,提出了一个全新的基于GIS的边坡稳定性三维栅格分析模型。在这个模型中,假定初始滑动面就是椭球底面,采用蒙特卡洛(Monte-Carlo)随机模拟方法,在求取最小安全系数法的同时,确定出最危险滑动面。运用GIS栅格模型和GIS数据模拟滑坡滑动过程时,滑坡体将沿主滑方向滑动,直到其安全系数上升到1为止。所有的计算均可通过一个称为三维边坡地理信息系统(3DSLOPGIS)的计算程序来完成,该程序主要利用GIS的空间数据处理分析功能。
【关键词】确定性模型 地理信息系统(GIS) 蒙特卡洛(Monte-Carlo)模拟 滑动模拟 三维边坡稳定性
1 引言
滑坡不稳定性和风险评价不但已成为地学家和工程专家们感兴趣的主要课题,同时也成了世界各地政府部门和管理者关注的焦点。据统计世界上每年约有600人葬身于滑坡灾害中。在许多发展中国家,自然灾害所带来的经济损失,占总国民生产总值的1%~2%。
近年来,由于地理信息系统具有强大的空间数据处理功能,被广泛运用于自然灾害评价领域。GIS是由硬件和软件组成的系统,它可以实现数据采集、输入、操作、转换、可视化、组合、质疑、分析、建模和输出等过程。GIS对空间数据具有强大的分析和处理功能。同时,基于GIS的地质技术分析模型,可以简便而有效地分析滑坡稳定性。目前它已经被广泛地用于土木工程和地质工程中,进行边坡稳定性的分析。
我们通常认为一个传统的模型无论是对均质滑坡还是非均质滑动都是适用的。稳定性指数是被广泛应用的、基于岩土工程模型和物理力学参数的安全系数。安全系数的计算需要几何数据、剪切强度数据及孔隙水压力数据,正确的结果取决于可靠的数据和恰当的模型。尽管输入的数据会较大程度地影响安全系数,但一个可靠的确定性模型对于取得可靠结果则更为重要。确定性计算可在GIS系统内执行,也可利用其他程序完成。若使用其他程序计算,则GIS只作为一个空间数据库用来存储、显示、更新输入数据。此方法主要优点是利用外部模型计算可以节约时间;而其缺陷是对从外部模型获得的数据进行转化时较为复杂。因为每一个程序都有其自己的数据格式和数据结构,数据转换成为一个主要的问题。有些程序的输入模块只允许人工输入数据。只有当这些程序所默认的数据格式都是 ASCII码时,数据转换才可直接进行。运用外部模型的另一个缺点是计算结果通常不是按GIS的空间分布模式来表达,而是以点或线的形式表述的。因此,改变这种计算结果的表达形式也是个主要的问题。
用来计算安全系数稳定性模型的边坡是二维或三维的。因为一个地区包括很多边坡,而且必须分别对每个边坡做分析,所以利用这些模型计算安全系数的空间分布非常花费时间。要克服数据转换的困难,可以利用GIS内部确定性计算模型来实现。然而这一方法也有缺点,那就是由于应用复杂算法、迭代过程及在常规二维 GIS中的三维体积等复杂局限性,使得只有简单的模型能较容易实现。当前,只有基于GIS的无限边坡模型能分别计算出每个像元的安全系数。研究表明,只有当越来越多的成熟的三维模型和GIS系统得到使用后,才能彻底解决这类问题。
从近来对 GIS用于边坡稳定性分析的调查中发现,大部分研究者潜心于运用统计学方法来确定边坡破坏与影响因素之间的关系。尽管GIS能对区域数据进行了准备和处理,但是只有极少量的研究者运用了GIS的集成功能和边坡稳定性的确定性模型。
即使在很短的距离范围内,边坡破坏在空间上都有其不同的几何结构。因而,运用三维模型分析边坡稳定性是合理的。从20世纪70年代中期以来,三维稳定性模型的发展和运用日益受到关注。在地质力学的著作中提到了几个三维分析方法。
上面提到的大部分方法都用到了柱状图法。这些方法将柱体之间的作用力,或者说作为三维安全系数计算的假定前提,都忽略不计。因为所有与斜坡相关的GIS数据都可转成栅格数据,所以这些基于三维模型的柱体,就可能借助于使用GIS栅格数据用来进行三维稳定性的计算。然而,长期以来大家习惯采用人尽皆知的“一维模型”——“无限斜坡”模型,来描述滑动面与地面平行的长期天然边坡的潜在危险性。这样的模型仅仅可以用于浅层斜坡失稳分析和一些存在深层滑坡的区域性研究。
由于算法复杂、步骤重复和三维数据在二维GIS中难于表达,早期的文献中并没有提及三维确定模型的应用。为了克服 GIS数据的外部转换和GIS内部算法复杂等困难,此次研究中,在GIS软件组件(a GIS component)中使用了Visual Basic程序。三维因子的计算和滑动过程的模拟由计算机内的三维边坡地理信息系统(3-DSLOPGIS)的计算程序完成。在这个系统中,GIS组件(ESRI公司生产的MapObjects2.1)可以完成所需的GIS功能,就像普通的GIS软件一样,它可以有效的管理和分析所有与滑动相关的数据。所有用来计算三维斜坡安全系数的数据都采用GIS的数据格式(例如矢量和栅格数据层),因此,没必要在GIS数据格式和其他程序的数据格式之间进行数据转换;同时,复杂算法和三维问题的交互程序也可以理想的实现。
在此次研究中,将基于GIS栅格数据和基于柱状图的三维边坡稳定性分析模型相结合(Hovland,1977),演绎了一个新的基于GIS栅格的三维确定性分析模型。
运用蒙特卡洛随机模拟方法求最小安全系数值,从而确定临界滑动条件。假定基本滑动面是一椭球体的较低部分,临界滑动则受不同地层受力情况和不连续界面状况的影响而变化。客观事物的这种变化引出最小三维安全系数。
如果滑坡的三维安全系数小于1,滑坡就有滑动的危险,那么评估滑坡灾害的规模和影响范围是非常重要的。因此,在此研究中,采用基于GIS三维栅格数据模型和GIS栅格数据来模拟滑坡滑动过程的目的,就是评估滑坡危险性和预测其影响范围。
2 基于GIS的三维模型
利用GIS的空间分析功能,所有与三维安全系数计算有关的输入数据(如高程、倾向、坡度、地下水、地层、滑动面和力学参数等)都有其对应的栅格元,而所有与斜坡相关的数据都是栅格化的。当这些数据输入到确定的边坡稳定性模型中时,就可计算出一个安全系数值。下面在Hovland模型的基础上,详细介绍基于GIS的三维模型。在这个模型中,考虑了孔隙地下水压力,所有输入数据都能简单地转换成栅格数据。
图1是具有潜在滑动面的滑体的三维几何示意图。滑坡的稳定性与地质岩层、地貌、地质力学参数和水动力条件有关。
图1 边坡坍塌三维景观
图2所示是土壤(或岩石)小柱状研究体物质的离散性。所有与滑坡相关的数据都可用如图2所示的柱状三维可视图来表示。假定每一个柱体单元的垂面均为无摩擦面(柱体单元的垂面不受其他边界影响,或其影响可忽略不计),三维安全系数可用公式(1)表示:
地质灾害调查与监测技术方法论文集
式中:F3-D为三维斜坡安全系数,W为一个柱体的重量,A为滑动面面积,c为内聚力,φ为内摩擦角,θ为滑动面的角度,而J、I为在斜坡破坏范围栅格内的行列数和柱体数。如果没有GIS,则基于柱体模型的三维安全系数的计算将是冗长且耗时的工作,数据的更新和增加也极其不便。然而,在GIS中,通过运用GIS空间数据处理与分析功能,整个研究区的边坡稳定性相关数据可用如图3所示的矢量图层来描述;而对于每一层,则可通过GIS空间数据处理与分析功能得到栅格数据,其像元大小可根据精度需要而定。
图2 滑动面和三维棚格柱状图
现在,将斜坡破坏划分为基于栅格数据的柱体。参考图2,诸如地表、地层、地下水、裂缝和滑动面之类的空间数据均可从栅格数据层中得到。因为与斜坡相关的数据量非常大,所以不能高效的管理所有的栅格数据集。因此,在三维边坡地理信息系统中,有一个专门储存这些栅格数据的点数据库,其中,有一个属性表用来链接所有与滑动相关的数据。每个栅格柱状图的中心点设置点类型,其他区域则设置与滑坡相关的一些数据(例如地面高程、地层和裂缝的高程、地下水、滑动面的深度等等)。表1所示即是属性表的一个实例。
图3 边坡稳定性分析GIS图层
表1 点数据库的实例描述
另一方面,为了控制滑坡边界和有效管理空间数据并进行分析,滑坡的边界线被定义为多边形类型文件。
基于这种点数据库,公式1可以改成基于GIS的方程。这里所有的阻力和滑力都是沿着滑动方向的,而不必如 Hovland的模型所用的Y轴方向。在本研究中,假定斜坡区域的主要倾斜方向为可能滑动方向。根据图4,滑动表面面积可由公式(2)得到。
地质灾害调查与监测技术方法论文集
从图4推导出如下公式:
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
接着,x和y轴的倾角推导如下:
地质灾害调查与监测技术方法论文集
记α=cellsize/cosθxz和b=cellsize/cosθyz,则一个栅格柱状图的滑动面面积为:
地质灾害调查与监测技术方法论文集
滑坡范围主滑动方向的倾角计算公式如下:
地质灾害调查与监测技术方法论文集
至此,三维边坡水平滑动方向安全系数可以用下面的公式计算:
地质灾害调查与监测技术方法论文集
图4 三维安全因子推导公式的一个栅格柱状图
这里,对于每个栅格,Zji,zji分别为地表高程和滑动面高程,uji为在滑动面上的孔隙水压力,而 γ′为单位重量。
为了检验基于栅格的GIS三维稳定分析模型,我们运用这个模型做了一个实例计算。实例问题为一个均质的粘土滑坡,具有球形滑动面,其他各种参数如图5所示。在图5中,c为内聚力,φ为摩擦角,R为瞬时摩擦力,γ为土的单位重量。运用封闭式(closed-form)算法得出三维安全系数为1.402。运用CLARA模型算得安全系数为1.422。同样的问题运用三维边坡模型算得三维安全系数范围为1.386到1.472,它取决于用于被分离的边坡柱体的数量。
图5 实例问题验证
运用基于GIS栅格的三维稳定分析模型(图5),并将格网尺寸定为0.5m时,算得三维安全系数为1.386;而当格网尺寸为0.6m时,算得安全系数为1.388。很明显,与封闭式算法相比,基于栅格模型的GIS可有效的用于三维边坡稳定性评估。
3 确定临界滑动表面和蒙特卡洛模拟
滑动面只能通过岩土工程调查来确定,由于地质调查的费用比较昂贵,因此滑动面通常是很难确定的。因此,边坡稳定性评价对临界滑动面的确定是非常重要的。
为了判定三维临界滑动情况,利用蒙特卡洛随机模拟方法来计算三维安全系数最小值。假定最初的滑动面是一个椭球体的较低部分,边坡表面则根据不同地层受力情况和不连续界面条件而改变。最终得到危险滑动面,同时可得到相关三维安全系数的最小值。
4 椭圆坐标转换
假定最初的滑动面是一椭球体的较低部分,椭球体的倾斜方向设置为与研究区主要的倾斜方向一致;将椭圆的倾角基本上设定得与研究区起伏变化的倾角接近。其主倾向为α,主倾角为β,它们是由边坡破坏区域主要栅格像元的值确定的。假定倾向和倾角属正常分布,则将主倾向α和倾角β代入分布模型中:
地质灾害调查与监测技术方法论文集
运用公式(10)和(11)完成坐标转换。图6显示了坐标转换过程。
图6 坐标转换过程
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
式中:x、y、z为全球大地坐标,
为当地坐标,x0、y0、z0为椭球体中心点坐标。
5 Z值的确定和滑动面的倾斜度
滑动面上“B”点的Z值是根据直线 AB和椭圆,由公式(12)计算的结果确定的(见图7)。
地质灾害调查与监测技术方法论文集
对于每个栅格像元,滑动面的倾向和倾角可通过下面的公式计算得出,像元(j,i)的倾角可以通过图8中点1~4的Z值来确定。点1~4的值由公式(13)(14)(15)算出,滑动面的倾向和倾角由公式(16)算出。
图7 确定滑动面上的Z值
图8 滑动倾角的计算
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
这里,Z(j,i)为像元(j,i)的Z值,θ为倾角,β0是相对于X轴的倾向。在GIS中,倾向是与 Y轴之间的夹角。因此,当最高点是点3时,倾向是90-β0;当最高点是点4时,倾向是90+β0;当最高点是点2时,倾向是270-β0;当最高点是点1时,倾向是270+β0。
6 随机模拟
为了确定临界滑动面,蒙特卡洛模拟通常用于为三维边坡稳定性分析选择变量。这些变量是椭球体的中心点、几何参数和倾角。椭球体的中心点作为研究区的中心点需要首先确定,然后在一个确定的范围内随机选择。
椭球体的几何参数a、b、c是由用户在一定范围内随机设定的,确定范围如公式(17):
地质灾害调查与监测技术方法论文集
假定a,b,c都均匀分布,则蒙特卡洛模拟的随机变量由公式(18)和(19)来算出。
在[0,1]范围内平均分布的随机变量可通过全等乘积方法得出:
地质灾害调查与监测技术方法论文集
地质灾害调查与监测技术方法论文集
式中:ri为在[0,1]范围内平均分布的随机变量。在[a,b]范围内平均分布的随机变量可由公式(19)计算得出。
地质灾害调查与监测技术方法论文集
式中:xi为在[a,b]范围内平均分布的随机变量。
椭球体的倾角设定为平均分布的一个随机变量。平均分布范围为主倾角及其在一个确定的波动范围之内变化的变量。
7 计算三维安全系数最小值的过程
整个研究区(或边坡破坏范围)可以被均分为若干小矩形栅网,如同基于栅格的GIS一样。关于基于栅格的三维边坡稳定性分析的数值计算,所有的计算过程都可以通过前面提到的Visual Basic(利用GIS组件)来完成。这个软件叫三维边坡地理信息系统,是运用 Visual Basic 6.0和ESRI公司生产的MapObjects 2.1开发的。MapObjects作为GIS的一个组件,用来对GIS数据进行组织和空间分析。计算三维安全系数的过程如图9所示。
图9 三维安全因子最小值计算过程
在这个过程中,数据模块的功能用来获得所有与边坡相关的地质、地貌、水动力学数据和地质力学参数;随机变量参数模块用来随机选择蒙特卡洛模拟的实验滑动面;三维边坡稳定性模块可用于计算三维安全系数;而危险滑动面及其安全系数可以通过一些实验计算得出。在图9中可以看到,关于GIS空间分析功能的所有模块可以通过GIS组件来实现。因为一个GIS组件是在三维边坡地理信息系统系统中完成的,所以可以有效地计算三维安全系数;同时利用与边坡相关的GIS数据,所有的相关数据和结果可以在三维边坡地理信息系统系统中实现可视化。
实例剖面如图10所示。在这个实例中考虑的因素有:4个地层、地下水和破坏面;其物理和力学参数如表2所示。
表2 研究实例的物理和地质力学参数
图10 断层面研究实例
图11 计算次数与最小三维安全因子实验
为确定临界滑动面,对蒙特卡洛随机计算次数进行了实验,总共计算次数达到了1000次。每次实验计算的三维安全系数最小值的结果如图11所示。图中明确显示在实验计算了300次后,得到的安全系数最小值。这300次实验的结果见图12,这些计算结果差别不太大,其最小值为1.34,最大值是1.68。这个临界滑动的研究程序是建立在最小安全系数的计算基础之上的。而最小安全系数的计算结果取决于参数的随机选择。有关这一临界滑动实例的三维可视图见图13。通过三维模型与二维模型结果的比较,用Janbu法确定临界滑动面时,使用的是图10所示的二维模型和表2所列的参数,通过这种二维模型计算出的安全系数为1.18,这要比用三维模型计算出结果的极小值(1.346)略小一点。
图12 三维安全因子分布曲线
8 滑坡滑动过程模拟
基于GIS栅格三维边坡稳定性分析模型和GIS栅格数据,对滑坡滑动过程进行了模拟,直到三维安全系数大于1为止。滑动方向按滑动面的主滑方向确定。图14中展示了由滑动面确定的八个滑动方向。例如,若滑面方向的倾角在22.5°~67.5°之间,则滑坡将要滑动的方向恰在该图的右上方(即“5”方向)。
图13 临界滑动面三维展视图
图14 滑动面的滑动主倾向
图15 滑坡滑动过程模拟流程方框图
滑坡滑动过程的模拟流程见图15。首先,要计算滑坡初始状态时的三维安全系数,以确定其滑动的可能性。若其安全系数小于1,则接着进行下一步滑动过程模拟。先沿着由滑面主倾向确定的滑动方向移动滑坡多边形;接着,在新的滑坡多边形范围内,分步(每一步等于一个栅格大小)计算每一个栅格的DEM和滑动的变化,并再次计算下一步滑动的新滑动方向。并在新的DEM数据和滑动多边形范围的基础上,计算出新的三维安全系数。如果三维安全系数仍然小于1,则进行以下的新滑动步骤模拟。
在这种滑动模拟模型中,假定滑动面内摩擦角不改变,但除了在初始三维边坡安全系数的计算过程之外,假定滑动面没有内聚力(即内聚力为零)。
仍然用同样的实例(如图5所示),用不同的两种动力学参数进行滑坡滑动过程模拟:
情况1:c=4kN/m2,φ=110,y=23kN/m3
情况2∶c=6kN/m2,φ=10.5°,γ=23kN/m3
第一种情况下,初始边坡安全系数为0.82,在进行7步滑动之后,滑坡体开始趋于稳定,其安全系数是1.04。部分滑动步骤剖面及三维视图变化如图16所示。在此图中,DEM的改变及滑坡体移动过程一目了然。运用三维边坡地理信息系统,也可将可视滑动过程表现为GIS地图和剖面图的形式。滑坡体沿水平方向的最终滑动距离为3.0m。
图16 不同滑动阶段的地表和剖面三维视图
第二种情况下,滑坡体将一直向下滑动到平坦地区,水平方向滑动距离为14m。滑坡体最后停止滑动位置的三维展视图如图17所示。
图17 滑坡体最后停止位置
9 讨论和结论
在三维边坡稳定性柱状分析模型的基础上,开发了一个全新的基于GIS栅格的三维确定性模型,并且通过一个问题实例证实了其正确性。在三维边坡稳定性分析模型中,假定其初始滑面为一椭球面;其三维临界滑面,是利用蒙特卡洛随机模拟求取最小三维安全系数而确定的。基于GIS的栅格三维模型,滑坡滑动过程模拟用于判断滑坡灾害和预测滑动距离。已开发了作为计算程序软件的三维边坡地理信息系统,它足以完成一切有关三维边坡问题的计算,其中的GIS组件用于实现GIS的空间分析功能和有效数据的管理。因其具有空间分析、数据管理和与边坡相关的综合数据的GIS可视化等优点,所以三维边坡稳定性问题已经比较易于研究。自打全新的基于GIS栅格三维边坡稳定性分析模型问世,就为惯于使用传统数学方法研究边坡稳定性的工作者拓展了一个新的研究领域和数据库方法。
帮忙找下关于GIS的
【现状】
中国GIS行业发展探讨与分析(转自)
学者们都说中国GIS市场巨大,GIS产业发展迅猛,但是我认为,中国的GIS是彷徨的。那么,读者一定会问为什么?
正文之前,我们先解释什么是彷徨。彷徨指徘徊,走来走去,不知道往哪里走好;犹豫不决;没有方向。
好,明白了什么事彷徨,读者应该已经明白中国GIS事业所处的状态了。那么开始正文部分:
首先,我们几乎没有前沿的自主技术(我说这话很多所谓的自主研发的GIS厂商会生气,在此表示抱歉,良药苦口啊!)。国内的开发市场主要分为两股力量:1、商业二次开发;2、开源GIS的商业开发。
前一个大部分使用的是ESRI、GeoMedia、MapX,超图(superMap,中国少有的自主研发公司)也占有一定的份额,中地(MapGIS,个人认为中地并不是企业,而是政府机构)、GeoBean(地网开发方面资料太少了,不过功能还行)等的开发集中在政府外包的项目和学校科研。
后一个是雨后春笋一样的开源掘金队伍,发现了国外的开源GIS是免费的,便用来做商业开发,成为了国内发展较快的GIS队伍的生力军。的确,我就是后一个队伍的一员,但是我心中存在淡淡的隐忧,我们不论是用人家的API还是OGC的开发标准,都是在追着洋人的屁股跑。
其次,国内的GIS以开发为主的情况下,并没有出现能够真正的提供GIS服务的供应商和研发商,没有形成产业循环,而只是企业内行为,无法形成外部循环经济效益。就其原因,主要是商业项目太少并且政府项目招标环节存在一定的“关系因素”,即招标部门养着一个专门用来投标开发的GIS开发企业,不论这样是经济的还是不经济的,都能够为招标的部门谋取一定的“利润”。总的来说,GIS还是处于事业单位的发展模式下,真正的GIS市场秩序并没有建立起来。市场上存在大量的没有断奶的所谓企业,这样企业的竞争力严重不足,开发创新精神严重缺乏!
第三,中国GIS应用的民用度不高,GIS到底是发展大众方向还是主要以承包地理信息系统工程项目为主业内还存在一定的争议。到现在,我们国内也没有出现真正的GIS大众商业运作模式,这种模式还需要继续探索。一旦GIS产业发展走向大众化,就存在产业泡沫的问题,例如我们年初所看到的GIS与GDP发展的互动关系。我们急需一种比较完整的商业模式来运作GIS产业,而不是像“小作坊”一样的包项目生产,这样的项目不可能永远存在。
第四,政府对于GIS产业的政策不明朗,中央政府对于GIS的立场是支持的,但是迫于GIS项目的敏感性,所以很多的项目无法推行。地方上,各个政府机关的小利益矛盾比较尖锐,项目推行受到多方面非技术因素的影响,直接导致了很多的项目“流产”或“空壳”。从而影响了中国GIS的走向。
第五,GIS教育多而不精,缺乏实践教育,学生毕业后就业压力巨大,GIS市场的容量并不能消化这些毕业生,导致人才流失。大量的毕业生考研后继续失业,毕业生转行成为风尚,甚至出现了学校GIS专业没有人做GIS的尴尬情况。这导致了中国GIS人才的缺口增大,GIS从业者创新能力下降。当然,这个问题是应试教育引起的,也普遍的存在于其他专业!
第六,也是最关键的一条,就是我们正在逐渐的丧失创新能力,并且缺乏有效的风险投资作为GIS产业发展的支持,相比于GIS来说,房地产、道路建设、贸易等产业更加实际,更加的赚钱。因此,GIS人必须寻找一种适合我们自己的融资方式和商业模式来改变这种问题。
其实不管是业界还是技术的前沿 都把gis的软件开发策略作为一段时间或者是长期的规划来处理 这样基本上覆盖了gis核心服务的模型构架 使得服务的方向较为单一 不能很好的实行大众化的服务 这个固然跟眼前的政府政策有很大的关系 但是业界自己的发展探寻是不是也应该重新审视一下自己的阶段成果呢!
gid在中国的发展已有二三十年了吧 不论是早期的技术引进还是目前的自主研发(当然研发力度还远远不及国外的同行 这方面esri就是好的榜样)都还有很大的提升空间 而有些业内人士由于正好看好了这个态势 也大胆猜想GIS将会渗透各个领域各个行业 也将是IT的另一大主流方向 这话有一定的道理 在某种程度上也能很好的体现GIS发展的前景
【GIS对经济、社会作用】
一、GIS技术的兴起 为了解决人类所面临的人口、资源、环境和可持续发展等问题,协调自然与社会间的矛盾,以保障社会经济的可持续发展,必须采用现代的各种信息技术。GIS在其中发挥重要作用,而得到了各国政府和社会团体的广泛关注。很多国家都建立起国家性和地区性地理信息研究中心,发布有关行政法令,进行地理信息系统研究,培养人才,以满足地理信息系统迅速发展的需要。 以美国为例,1988年统计,84%的联邦机构已使用和计划使用地理信息系统,7万多个地方政府机构已建立了GIS服务系统。政府对地理信息产业的投入每年约为16.5亿美元。1992年,仅美国地质调查局的空间数据库投入就达7.54亿美元。随着美国地理信息产业的发展,每年的应用项目多达一万个以上,降低成本5—10亿美元,并新创产值在10亿美元,并新创产值在10亿美元以上。 美国总统克林顿于1994年4月11日签发了“协调地理数据的获取和使用:国家空间数据基础设施(NSDI)”的行政命令。该行政令要求成立联邦地理数据委员会(FGDC),发展国家地理空间数据交换网络(NGDC),在FGDC组织下制定数据标准,并在2000年1月完成美国的国家数字地理空间数据框架(NDGDF),以支持在2000年将展开的十年一度的人口普查。 近年来,地理信息系统技术发展极为迅速,并向着集成化和商品化发展,开始形成比较完整的地理信息产业。1994年,全球地理信息系统及其相关产业的年产值已达31亿美元,年增长率在35%以上。 我国是一个发展中大国,人口基数大,经济基础差,人均资源占有量少且地区分布不平衡,环境污染严重,生态系统脆弱,长期以来对粗放型经济增长的追求使得我国的资源与环境问题更加恶化。中国政府充分的认识到这种局面,于1994年出台了《中国21世纪议程—中国21世纪人口、环境和发展白皮书》,在中国共产党十四届五中全会上把可持续发展列为基本国策之一。地理信息系统,作为一种空间技术,与人类的生存、地区的发展和进步关系密切。地理信息系统将为人类解决全球与地区环境与发展问题,实现社会经济可持续发展目标做出重要贡献。 经过15年的发展,地理信息系统在我国得到了很大的发展,其应用前景与价值已得到有关部门的认识与重视,目前开展地理信息系统工作的部门已超过20个。我国已建成2个地理信息系统国家重点实验室,建成2个地理信息系统国家重点实验室,建成国土基础地理信息系统1:100万数据库和十多个较大规模的信息系统。通过“八五”国家科技攻关,地理信息系统技术逐渐从实验、局部走向实用化、集成化和产业化,在重大自然灾害的监测与评估、重要产粮区主要农作物估产、城市交通管理等方面取得突破性进展,产生了明显的社会、经济效益。 地理信息系统的在我国的应用虽然取得了很大成就,但与美国等先进国家相比,在应用的规模和深度上还存在较大的差距。中国的国民生产总值为4300亿美元,据外商估算,1993年的GIS投入为2000万美元,占国民生产总值的0.47/1000,与美国的3.3/10000相比差一个数量级。目前建立的GIS专业应用系统大多属面向具体项目的GIS,研究成果多,实用系统少,普遍存在利用绿低,效益不高,重开发轻应用的状况。在国产GIS基础软件开发方面,也存在投资和开发力量分散、低水平重复开发普遍,开发周期长,效率低,产品功能雷同,商品化程度低等问题。同时在地理信息获取方面也存在着重复投资多,信息的质量问题也比较严重,信息的标准化还需进一步加强等问题。 地理信息系统有着广泛的社会需求和广阔的应用领域。近年来,国民经济建设、国民经济管理和人民生活与社会发展对地理信息产品和服务的需求逐步增加。一方面各级政府部门或国民经济管理机构、业务部门要求及时地了解和掌握国民经济建设和社会发展在地域空间上的运行状态、分布特征、资源环境条件和社会经济基础等方面的地理信息。另一方面,在商业、运输等部门,为了更好的管理日常业务,并进行各种分析评价工作,也开始使用地理信息系统。随着世界性高速信息网络的建设,地理信息系统开始进入家庭和日常办公场所。 今后五年以至到2000年是我国改革和发展的关键时期。我国经济将持续快速发展,基础工业、基础设施建设大规模展开,城市化发展加快,而人口、资源、环境压力很大。这段时间内,我国将实现经济体制和经济增长方式的重要转型和转变。坚持可持续发展,逐步缩小地区发展差距,基本消除绝对贫困是这一时期的基本方针和任务。与此同时,面向21世纪信息时代的来临,我们必须抓住机遇,加速国民经济信息化进程,在信息基础设施的建设方面迈出较大步伐。 这一时期也是我国GIS发展十分关键的时期。必须从国内外GIS发展的现状和趋势出发,根据这一时期国家经济和社会发展的要求和国情、国力,考虑这一时期我国GIS发展的规划、战略、政策和措施。遵循我国信息化建设“统筹规划、联合建设、统一标准、专通结合”的总方针,大力推进我国GIS的实用化和产业化。 二、GIS在当代学科体系中的地位 地理信息系统是一种特定的处理地理信息的信息系统,它的定义多种多样,是一种覆盖领域十分广泛的高新技术。 地理信息,由于它具有区域性、多维性和时序性,是人类生存和社会活动中连接各种信息,形成在空间和时间上连续分布的综合信息的基础。它是解决人口、资源与环境和社会可持续发展所面临的各种问题和促进国民经济持续、快速和健康发展的基本信息手段。 地理信息系统所依托的学科称为“地理信息学”(Geomatics),它是一个现代的科学术语,代表了用各种现代化方法来采集、量测、分析、存贮、管理、显示、传播和应用与地理和空间分布有关的数据的一门综合和集成的信息科学,是当前的测绘学、摄影测量与遥感、地图学、地理信息系统、计算机图像图形学、卫星定位技术与现代通讯技术的有机结合。 地理信息系统是以上多学科集成的基础平台,用作搜集、存贮、管理和分析空间信息和数据。卫星定位、遥感和摄影测量是是快速获取和更新地理信息的主要手段,目前正走向全数字化道路。地图学与图像图形学既用作地理信息的分析和处理,也用于地理信息成果的显示与表达。专家系统的引入将力求使数据采集、更新、分析和应用更加自动化和智能化。现代通讯技术,尤其是正在兴建的信息高速公路将为地理信息在各部门的传播和应用提供保证。因此,地理信息学的形成和发展是整个信息科学和技术发展的一个重要组成部分,将会给相关学科的发展带来机遇和挑战。 近年来,国外一些高校开始将原来的测绘专业改为地理信息学专业,如荷兰的ITC和香港理工学院称Geoinformatics,加拿大的拉瓦尔大学和卡尔加里大学称Geomatics,澳大利亚的新南威尔士大学称为Geomatic Engineering。这标志着地理信息学(Geomatics)作为一门科学、技术和产业已经形成。 对于地理信息系统和地理信息学在当代学科体系中的地位还没有统一的认识,一般将它看做是一门跨学科的边缘学科。 钱学森教授从八十年代出以来,一直提倡建立一门地理科学,它是自然科学与社会科学的汇合,是一门以理解和协调人地关系为最高目标的研究作为人地系统的地球表层的科学,它与自然科学、社会科学、数学科学、系统科学、思维科学、人体科学、美学、军事科学、行为科学并列的一大现代科学技术门类,它不是单一学科,而是一个学科体系。地理科学就是研究人口、资源、环境与发展的,不言而喻,地理科学将发挥主要作用。 杨开忠教授将地理科学分为四个层次:地理科学哲学、基础地理科学、应用地理科学和技术地理科学,我们略加修改,如图1所示。 图 1 地理科学体系图解 地理信息学同地图学、GPS、遥感、测绘、数量地理学同属于技术地理学。近年来人们所关注的GIS、RS与GPS的集成的理论基础也在于此,它们都是地理科学的技术支持学科,有着共同的研究对象,只有彼此结合起来,才能将研究推向深入,这是地理科学研究方法的一次质的飞跃。地理信息系统为地理科学研究提供了一个现代化工具,使地理科学的研究从传统的定性描述走向定量分析和空间分析,从简单系统走向复杂系统,具有了更好的技术手段。 三、GIS发展的不同阶段 GIS对社会发展所起的作用,与它所处的发展阶段紧密相关的。一项新技术的推广应用都要经过一个研究、推广、普及的过程,其中还需多次反复,才能成功,GIS也不例外。目前来说,它仍然出于发展阶段,特征在于它的基本理论及方法还出于不断探索完善之中,有关其数据模型、数据处理方法的论文也不断出现。但它的应用早已提上日程,有关管理、教育的研究已引起人们的关注。 关于我国GIS事业的发展历程,何建邦和蒋景瞳研究员对此做了回顾,他们认为国际地理信息系统的发展开始于本世纪60年代。中国地理信息系统研究与应用起步较晚,从80年代初开始,已有15年的历史。 中国科学院院士陈述彭教授在1978年杭州遥感学术讨论会上,把地理信息系统作为一个学科和技术领域分支提出,但当时并未引起重视和讨论。以它作为中国GIS事业准备工作开始。根据实际发展历程,他们建议把我国GIS发展划分为如下阶段: 1978—1980 为准备阶段,在我国正式提出地理信息系统领域; 1980—1985 为起步阶段,经过两年的准备和辩论,终于在1980年1月19日在中国科学院遥感应用研究所建立了全国第一个GIS研究室。GIS正式走上研究和实验的舞台,在中国开始了它的发展。 1986—1995 为发展阶段,从第七个五年计划(1986—1990)开始,GIS作为政府行为,正式列入国家科技攻关计划,开始了有计划、有组织、有目标的科学研究、应用实验和工程建设的工作。在这个发展阶段内又可划分为两个时期,即前五年(1986—1990)的初步发展时期和后五年(1991—1995,即第八个五年计划期间)的加快发展时期。GIS从研究、实验和局部应用走向实用化、集成化和工程化,在国民经济和社会保障上开始发挥重大作用,技术渐趋成熟。 1996年以后为走向产业化的阶段。目前,中国GIS已具备产业化的条件,已经造就了一批GIS专家和产业队伍,形成了多个GIS研究、培训和数字化基地。在本世纪最后五年,GIS在中国将会正式成为一种产业,进入市场,在国民经济和公众生活中得到广泛的应用。 我国GIS正处在向产业化转变的时期,叶嘉安教授对我国GIS产业化过程中所面临的重要转变进行了总结,主要有以下几点: 1、项目(资金)来源的转变 近年来,我国GIS系统开发资金逐渐由以科研经费(国家投资)为主转向商业投资为主转变,投资的回报需要直接来自所开发系统的运行过程中,这是GIS商品化的标志,这说明GIS的技术日趋成熟,GIS进入实际应用阶段。实际应用部门对GIS的需求日益高涨,成了项目和资金的主要来源。 2、开发者的转变 随着项目性质的变化,系统开发者由单纯的科研人员开始向工程技术人员转变。开发者头脑中的工程观念和市场观念、用户观念开始加强。 3、开发模式的转变 由国家投资、科研人员设计开发,以科研机构为主实施系统建设的“建设—移交”式的开发模式,转向开发部门与用户共同开发或用户自行开发,而由科研技术部门提供技术支持的开发模式。 4、技术重点的转变 系统功能开发由技术驱动转变为需求驱动,由注重软、硬件技术向注重管理技术和实用效益方面转变。 5、区域尺度的转变 受需求和资金来源引导,系统建设开始转向国家、区域、城市和工程项目等多种尺度,其中城市地理信息系统在近期蓬勃发展。 6、目标的转变 随着信息的社会化和产业化,GIS将由以面向管理决策部门的决策支持为主要目标,转向满足多层次、多领域的广泛的社会需求。 7、系统类型的转变 GIS由面向项目的系统向面向管理的系统发展成为必然的趋势。 陈子坦博士从应用的角度将GIS分为四个层次:项目水平、部门水平、企业化水平和社团水平。 项目GIS是GIS应用的初级阶段,用户的目标是完成一个特定的项目。用户主要关心的是获得这一项目的结论,其他与GIS相关的操作只是工具性的或中间过程。它们不能定期维护数据和应用程序的更新,在一个项目结束后,这个系统的周期也就结束了,大多数的科研机构、大学和科学家的GIS应用正处于这一阶段。 部门GIS的特点是具有一个维护良好的GIS数据库。这一数据库是定期更新的,并被很好的管理。从而可以用来完成一个部门、一个政府机构和合作双方中某一方的某些日常工作。这一部门中的用户随时利用最新的数据来分析和决策。目前已有数千的机构建立了部门GIS系统。 企业化GIS运行于多部门环境中,这些部门具有各自的职责和功能,他们之间共享共同的地理基础数据,分享硬件、软件系统资源,分享应用模型、专家经验和知识。他们还要分享维护和管理这一GIS系统的责任。网络通讯和分布式计算是支持企业化GIS的技术,所有数据和系统资源分布于一个网络上,在网络上流动,供多用户共享。企业化GIS可以帮助包括环境单位在内的企业更有效、更有目的性的完成决策制定过程。目前大约有数百个企业化层次上的GIS运行于政府和大公司中。 社会化GIS是GIS发展的未来层次。GIS不只是用于政府和科研机构,而且会被社会一般公众和团体所接触。人们可以通过Internet网络方便地获取所需的地理信息数据,象使用字处理软件那样方便地使用GIS软件。信息高速公路向社会化GIS提供技术支持。GIS系统将成为各种信息系统的一部分。GIS通过提供空间检索功能,在帮助人们操纵大量信息方面起着重要的作用。 从上述分析可以看出:我国目前所建立的GIS系统大部分属于项目GIS,只有少数的几个系统属于部门GIS,正逐渐向企业化GIS发展中。这就决定了GIS在我国社会发展中所起的作用并不是广泛的,GIS的建立和使用,基本上是政府行为,主要是为政府部门决策服务。 四、GIS在我国社会发展中的作用 我国GIS的应用水平,虽然与美国等发达国家相比存在较大的差距,但已经在国民经济各部门中发挥了重要作用。这里,我们仅就GIS在我国应用的几个主要领域作一简单介绍。 1、综合减灾 我国是在世界上自然灾害类型多,发生频繁,灾害损失最严重的少数国家之一,在以往的40年中,每年灾害经济损失约占国家财政收入的六分之一。近年来灾害直接经济损失每年约1000亿元,其增长速度明显超过全国经济增长,因灾人口伤亡也很严重。减轻自然灾害是我国社会经济持续发展的一项必不可少的工作。 减轻自然灾害是一项系统工程,它包括对自然灾害的监测、预报、评估、防灾、抗灾、救灾、恢复、教育、保险与综合管理,减灾的每一过程和环节都与空间的地理要素密切相关,如灾害发生的时空分布、强度与频度、灾害发生地社会经济易损性及抗灾能力、灾害评估、灾害应及救助措施及预案等,因而地理信息系统是减轻自然灾害的重要工具和手段,建立在具有庞大空间分析功能的地理信息系统上的减灾系统,才能在减灾中发挥快速、准确的决策作用。 GIS在减灾中的应用主要包括以下几个方面:1、灾害的监测和预报;2、自然灾害评估,包括灾前的历史灾害影响评价及灾情预测,实时的灾害应急评估和灾后的灾情评定;3、救灾和抗灾;4、灾害应急救助与救援;5、灾害保险与灾后恢复;6、灾害教育与宣传;7、灾害管理和灾害区划;地理信息系统在减灾中的应用会越来越广泛,尽管目前的应用还不完善,但随着综合减灾研究山进行,地理信息系统在该领域必将发挥出举足轻重的技术支持作用。 近年来,地理信息系统已经在减轻自然灾害的各个环节和领域得到或将得到应用。在我国的各单灾种灾害研究与管理部门,已建立了若干个用于单灾种研究的灾害信息管理系统,国家“八五”科技攻关项目中已开展了系列的自然灾害应急监测与评估研究及相应技术的研制,如水利部与科学院建立的实时洪水监测及水灾风险评估系统,中国科学院与国家气象局初步建立了实时台风、暴雨、洪涝灾害信息及减灾系统,中国科学院、国家教委所属有关科研、教学部门研制的应急气象卫星对小区域自然灾害进行应急评估的技术系统;国家地震局对一些城市进行震害预测的地理信息系统等。此外,GIS在人为事故的处理中也发挥了重要作用。 以重大自然灾害的监测与评价系统为例,该系统由7个子系统构成,以监测和评价洪水、干旱、林火、地震、雪灾、沙害和松毛虫害等7种灾害为目标,分别建成了相应的数据库、分析评价模型和试运行系统,从而构成了一个以GIS和RS技术为支撑的重大自然灾害监测评估的集成系统。该系统在监测评估近年来发生的重大自然灾害方面发挥了重大作用。 2、政府决策 GIS对社会发展的重要意义体现在其可以提高管理决策的科学性及合理性,无论是中央政府,还是地方政府,其管理水平的提高与GIS等信息技术的发展密切相关,特别是在现在信息社会中。 国情信息采集及管理、宏观经济、社会及环境规划、重大灾害防治等行政管理工作,在信息时代离不开GIS技术的支持,国务院综合国情地理信息系统的成功运行充分说明了这一点。它是一个融GIS与与办公自动化为一体的空间型信息系统,它以国家基础地理信息系统数据、政务数据和国民经济统计数据为基础,旨在为国务院领导机关研建一个以高新技术为支撑的宏观分析决策系统。该系统在国务院办公厅运行后,使得中央各部门的决策者门十分方便的查询所感兴趣的信息,方便了管理工作,一期工程的应用推动了省级GIS的建设。另一方面,GIS技术的发展还将成为未来国家级信息高速公路的一个重要组成部分,在信息高速公路的支持下,GIS对国家级的管理工作将具有更大的作用。 辽宁省国土资源信息系统是一个多要素多层次的空间型地理信息系统,是全国第一个省级地理信息系统,旨在为辽宁省政府机关提供一个用于对国土资源进行分析评价和规划应用的辅助工具。该系统在运行中,管理国土工作常用的数据,向有关部门提供信息服务,进行了沈阳市土地利用潜力评价和土地利用适宜性评价、辽宁省钢铁工业布局分析、本溪县水库淹没区分析等,为辽宁省的国土规划研究和编制提供了有力的科学依据。 中科院遥感所进行了“区域可持续发展决策支持系统的研究,建立了水资源、社会、经济决策支持模型和土地利用动态监测模型、土地人口承载力模型、人口预测评价模型、可持续发展动态规划模型等。以农业可持续发展为中心建立了遥感动态监测、分析评价、预测预警、管理规划与决策的完整体系,并进行了宏观规划、中观管理、微观工程决策三个层次的实验。随着研究的进一步深入和完善,类似的系统将在政府部门决策中发挥重要作用。 3、市政管理 城市历来是政治、经济、文化活动的中心,随着城市化进程的不断深入,城市在我国国民经济生活中发挥着越来越重要的作用,城市化所引起的一系列环境、生态、建设、管理等问题日益突出。城市是一个复杂的开放的空间系统,如果没有地理信息系统的支持,很难对城市进行有效的管理。 最近几年,城市地理信息系统在我国得到了蓬勃发展。深圳、北京、上海、厦门、海口、北海等大城市和沿海经济开放城市先后建立了城市地理信息系统。应用于城市资源、环境、交通、人口、土地管理、公共事业、基础设施、商业、旅游等领域,是发展最快的地理信息系统。 4、科学研究与教育 目前我国建立的地理信息系统,大部分是由科研单位和大学研究机构建立的,与科研和教育关系密切。通过这些系统的建立,使我们对GIS的认识逐渐深入,技术日趋成熟,培养了大批的不同层次的GIS研究开发人员,普及了GIS的知识,为我国GIS事业的产业化奠定了良好的基础。同时建立的一些GIS系统对后续系统的完善提供了技术规范,并为后续系统和其它科学研究提供了基础地理数据。特别是国家测绘局建立的国家基础地理信息系统,发挥了重要的示范作用。 5、其它 地理信息系统在其他领域的应用也不断深入,如农作物估产、军事指挥、投资环境评价等。如重点产粮区主要农作物估产系统,该系统以估算松辽平原、黄淮海平原、江汉平原和太湖流域的玉米、小麦和稻米的产量为目标,综合利用GIS和RS技术与野外调查相结合,提出了上述农作物播种面积的估算方法,建立了各自的单产模型,经过多次完善和多级集成,建成的重点产粮区农作物估产的信息系统。 地理信息系统在我国经过15年的发展已经在国民经济各部门中发挥着越来越重要的作用,从它的应用领域来看,几乎是无所不包的。
当前名称:GIS技术学院风包包夏季 gis大学
网页路径:http://scjbc.cn/article/doipehd.html