go语言消费生产 生产者消费者模式

用生产者消费者理解golang channel

生产者消费者问题是一个著名的线程同步问题,该问题描述如下:有一个生产者在生产产品,这些产品将提供给若干个消费者去消费,为了使生产者和消费者能并发执行,在两者之间设置一个具有多个缓冲区的缓冲池,生产者将它生产的产品放入一个缓冲区中,消费者可以从缓冲区中取走产品进行消费,显然生产者和消费者之间必须保持同步,即不允许消费者到一个空的缓冲区中取产品,也不允许生产者向一个已经放入产品的缓冲区中再次投放产品。

成都创新互联专业为企业提供师宗网站建设、师宗做网站、师宗网站设计、师宗网站制作等企业网站建设、网页设计与制作、师宗企业网站模板建站服务,10多年师宗做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

golang 的channel天生具有这种特性,即

①缓冲区满时写,缓冲区空时读,都会阻塞。

②channel 本身就是并发安全的。

golang实现多生产者多消费者:

运行结果:

可以看出,用golang实现生产者消费者非常简单,PV操作不需要各种加锁解锁,奥妙就在于CSP模型,即golang提倡的用通信代替共享内存。

golang使用Nsq

1. 介绍

最近在研究一些消息中间件,常用的MQ如RabbitMQ,ActiveMQ,Kafka等。NSQ是一个基于Go语言的分布式实时消息平台,它基于MIT开源协议发布,由bitly公司开源出来的一款简单易用的消息中间件。

官方和第三方还为NSQ开发了众多客户端功能库,如官方提供的基于HTTP的nsqd、Go客户端go-nsq、Python客户端pynsq、基于Node.js的JavaScript客户端nsqjs、异步C客户端libnsq、Java客户端nsq-java以及基于各种语言的众多第三方客户端功能库。

1.1 Features

1). Distributed

NSQ提供了分布式的,去中心化,且没有单点故障的拓扑结构,稳定的消息传输发布保障,能够具有高容错和HA(高可用)特性。

2). Scalable易于扩展

NSQ支持水平扩展,没有中心化的brokers。内置的发现服务简化了在集群中增加节点。同时支持pub-sub和load-balanced 的消息分发。

3). Ops Friendly

NSQ非常容易配置和部署,生来就绑定了一个管理界面。二进制包没有运行时依赖。官方有Docker image。

4.Integrated高度集成

官方的 Go 和 Python库都有提供。而且为大多数语言提供了库。

1.2 组件

1.3 拓扑结构

NSQ推荐通过他们相应的nsqd实例使用协同定位发布者,这意味着即使面对网络分区,消息也会被保存在本地,直到它们被一个消费者读取。更重要的是,发布者不必去发现其他的nsqd节点,他们总是可以向本地实例发布消息。

NSQ

首先,一个发布者向它的本地nsqd发送消息,要做到这点,首先要先打开一个连接,然后发送一个包含topic和消息主体的发布命令,在这种情况下,我们将消息发布到事件topic上以分散到我们不同的worker中。

事件topic会复制这些消息并且在每一个连接topic的channel上进行排队,在我们的案例中,有三个channel,它们其中之一作为档案channel。消费者会获取这些消息并且上传到S3。

nsqd

每个channel的消息都会进行排队,直到一个worker把他们消费,如果此队列超出了内存限制,消息将会被写入到磁盘中。Nsqd节点首先会向nsqlookup广播他们的位置信息,一旦它们注册成功,worker将会从nsqlookup服务器节点上发现所有包含事件topic的nsqd节点。

nsqlookupd

2. Internals

2.1 消息传递担保

1)客户表示已经准备好接收消息

2)NSQ 发送一条消息,并暂时将数据存储在本地(在 re-queue 或 timeout)

3)客户端回复 FIN(结束)或 REQ(重新排队)分别指示成功或失败。如果客户端没有回复, NSQ 会在设定的时间超时,自动重新排队消息

这确保了消息丢失唯一可能的情况是不正常结束 nsqd 进程。在这种情况下,这是在内存中的任何信息(或任何缓冲未刷新到磁盘)都将丢失。

如何防止消息丢失是最重要的,即使是这个意外情况可以得到缓解。一种解决方案是构成冗余 nsqd对(在不同的主机上)接收消息的相同部分的副本。因为你实现的消费者是幂等的,以两倍时间处理这些消息不会对下游造成影响,并使得系统能够承受任何单一节点故障而不会丢失信息。

2.2 简化配置和管理

单个 nsqd 实例被设计成可以同时处理多个数据流。流被称为“话题”和话题有 1 个或多个“通道”。每个通道都接收到一个话题中所有消息的拷贝。在实践中,一个通道映射到下行服务消费一个话题。

在更底的层面,每个 nsqd 有一个与 nsqlookupd 的长期 TCP 连接,定期推动其状态。这个数据被 nsqlookupd 用于给消费者通知 nsqd 地址。对于消费者来说,一个暴露的 HTTP /lookup 接口用于轮询。为话题引入一个新的消费者,只需启动一个配置了 nsqlookup 实例地址的 NSQ 客户端。无需为添加任何新的消费者或生产者更改配置,大大降低了开销和复杂性。

2.3 消除单点故障

NSQ被设计以分布的方式被使用。nsqd 客户端(通过 TCP )连接到指定话题的所有生产者实例。没有中间人,没有消息代理,也没有单点故障。

这种拓扑结构消除单链,聚合,反馈。相反,你的消费者直接访问所有生产者。从技术上讲,哪个客户端连接到哪个 NSQ 不重要,只要有足够的消费者连接到所有生产者,以满足大量的消息,保证所有东西最终将被处理。对于 nsqlookupd,高可用性是通过运行多个实例来实现。他们不直接相互通信和数据被认为是最终一致。消费者轮询所有的配置的 nsqlookupd 实例和合并 response。失败的,无法访问的,或以其他方式故障的节点不会让系统陷于停顿。

2.4 效率

对于数据的协议,通过推送数据到客户端最大限度地提高性能和吞吐量的,而不是等待客户端拉数据。这个概念,称之为 RDY 状态,基本上是客户端流量控制的一种形式。

efficiency

2.5 心跳和超时

组合应用级别的心跳和 RDY 状态,避免头阻塞现象,也可能使心跳无用(即,如果消费者是在后面的处理消息流的接收缓冲区中,操作系统将被填满,堵心跳)为了保证进度,所有的网络 IO 时间上限势必与配置的心跳间隔相关联。这意味着,你可以从字面上拔掉之间的网络连接 nsqd 和消费者,它会检测并正确处理错误。当检测到一个致命错误,客户端连接被强制关闭。在传输中的消息会超时而重新排队等待传递到另一个消费者。最后,错误会被记录并累计到各种内部指标。

2.6 分布式

因为NSQ没有在守护程序之间共享信息,所以它从一开始就是为了分布式操作而生。个别的机器可以随便宕机随便启动而不会影响到系统的其余部分,消息发布者可以在本地发布,即使面对网络分区。

这种“分布式优先”的设计理念意味着NSQ基本上可以永远不断地扩展,需要更高的吞吐量?那就添加更多的nsqd吧。唯一的共享状态就是保存在lookup节点上,甚至它们不需要全局视图,配置某些nsqd注册到某些lookup节点上这是很简单的配置,唯一关键的地方就是消费者可以通过lookup节点获取所有完整的节点集。清晰的故障事件——NSQ在组件内建立了一套明确关于可能导致故障的的故障权衡机制,这对消息传递和恢复都有意义。虽然它们可能不像Kafka系统那样提供严格的保证级别,但NSQ简单的操作使故障情况非常明显。

2.7 no replication

不像其他的队列组件,NSQ并没有提供任何形式的复制和集群,也正是这点让它能够如此简单地运行,但它确实对于一些高保证性高可靠性的消息发布没有足够的保证。我们可以通过降低文件同步的时间来部分避免,只需通过一个标志配置,通过EBS支持我们的队列。但是这样仍然存在一个消息被发布后马上死亡,丢失了有效的写入的情况。

2.8 没有严格的顺序

虽然Kafka由一个有序的日志构成,但NSQ不是。消息可以在任何时间以任何顺序进入队列。在我们使用的案例中,这通常没有关系,因为所有的数据都被加上了时间戳,但它并不适合需要严格顺序的情况。

2.9 无数据重复删除功能

NSQ对于超时系统,它使用了心跳检测机制去测试消费者是否存活还是死亡。很多原因会导致我们的consumer无法完成心跳检测,所以在consumer中必须有一个单独的步骤确保幂等性。

3. 实践安装过程

本文将nsq集群具体的安装过程略去,大家可以自行参考官网,比较简单。这部分介绍下笔者实验的拓扑,以及nsqadmin的相关信息。

3.1 拓扑结构

topology

实验采用3台NSQD服务,2台LOOKUPD服务。

采用官方推荐的拓扑,消息发布的服务和NSQD在一台主机。一共5台机器。

NSQ基本没有配置文件,配置通过命令行指定参数。

主要命令如下:

LOOKUPD命令

NSQD命令

工具类,消费后存储到本地文件。

发布一条消息

3.2 nsqadmin

对Streams的详细信息进行查看,包括NSQD节点,具体的channel,队列中的消息数,连接数等信息。

nsqadmin

channel

列出所有的NSQD节点:

nodes

消息的统计:

msgs

lookup主机的列表:

hosts

4. 总结

NSQ基本核心就是简单性,是一个简单的队列,这意味着它很容易进行故障推理和很容易发现bug。消费者可以自行处理故障事件而不会影响系统剩下的其余部分。

事实上,简单性是我们决定使用NSQ的首要因素,这方便与我们的许多其他软件一起维护,通过引入队列使我们得到了堪称完美的表现,通过队列甚至让我们增加了几个数量级的吞吐量。越来越多的consumer需要一套严格可靠性和顺序性保障,这已经超过了NSQ提供的简单功能。

结合我们的业务系统来看,对于我们所需要传输的发票消息,相对比较敏感,无法容忍某个nsqd宕机,或者磁盘无法使用的情况,该节点堆积的消息无法找回。这是我们没有选择该消息中间件的主要原因。简单性和可靠性似乎并不能完全满足。相比Kafka,ops肩负起更多负责的运营。另一方面,它拥有一个可复制的、有序的日志可以提供给我们更好的服务。但对于其他适合NSQ的consumer,它为我们服务的相当好,我们期待着继续巩固它的坚实的基础。

GO语言商业案例(六):PayPal

创建 PayPal 的目的是使金融服务民主化,并使个人和企业能够加入并在全球经济中蓬勃发展。这项工作的核心是 PayPal 的支付平台,该平台使用专有技术和第三方技术的组合来高效、安全地促进全球数百万商家和消费者之间的交易。随着支付平台变得越来越大、越来越复杂,PayPal 寻求对其系统进行现代化改造并缩短新应用程序的上市时间。

Go 在生成干净、高效的代码方面的有着极高的价值。这些代码可以随着软件部署的扩展而轻松扩展,这使得该语言非常适合支持 PayPal 的目标。

支付处理平台的核心是 PayPal 用 C++ 开发的专有 NoSQL 数据库。然而,代码的复杂性大大降低了开发人员发展平台的能力。Go 的简单代码布局、goroutine(轻量级执行线程)和通道(用作连接并发 goroutine 的管道)使 Go 成为 NoSQL 开发团队简化和现代化平台的自然选择。

作为概念验证,一个开发团队花了六个月的时间学习 Go 并在 Go 中从头开始重新实现 NoSQL 系统,在此期间,他们还提供了有关如何在 PayPal 更广泛地实施 Go 的见解。截至今天,已迁移 30% 的集群以使用新的 NoSQL 数据库。

随着 PayPal 的平台变得越来越复杂,Go 提供了一种轻松简化大规模创建和运行软件的复杂性的方法。该语言为 PayPal 提供了出色的库和快速工具,以及并发、垃圾收集和类型安全。

借助 Go,PayPal 使其开发人员能够将更多时间从 C++ 和 Java 开发的噪音中解放出来,从而能够花更多时间查看代码和进行战略性思考。

在这个新改写的 NoSQL 系统取得成功后,PayPal 内更多的平台和内容团队开始采用 Go。Natarajan 目前的团队负责 PayPal 的构建、测试和发布管道——所有这些都是在 Go 中构建的。该公司拥有一个大型构建和测试农场,它使用 Go 基础设施进行完全管理,以支持整个公司的开发人员的构建即服务(和测试即服务)。

凭借 PayPal 所需的分布式计算能力,Go 是刷新系统的正确语言。PayPal 需要并发和并行的编程,为高性能和高度可移植性而编译,并为开发人员带来模块化、可组合的开源架构的好处——Go 已经提供了所有这些以及更多帮助 PayPal 对其系统进行现代化改造。

安全性和可支持性是 PayPal 的关键问题,该公司的运营管道越来越多地由 Go 主导,因为该语言的简洁性和模块化帮助他们实现了这些目标。PayPal 对 Go 的部署为开发人员提供了一个创意平台,使他们能够为 PayPal 的全球市场大规模生产简单、高效和可靠的软件。

随着 PayPal 继续使用 Go 对其软件定义网络 (SDN) 基础设施进行现代化改造,除了更易于维护的代码外,他们还看到了性能优势。例如,Go 现在为路由器、负载平衡和越来越多的生产系统提供动力。

作为一家全球性企业,PayPal 需要其开发团队有效管理两种规模:生产规模,尤其是与许多其他服务器(如云服务)交互的并发系统;和开发规模,尤其是由许多程序员协同开发的大型代码库(如开源开发)

PayPal 利用 Go 来解决这些规模问题。该公司的开发人员受益于 Go 将解释型动态类型语言的编程易用性与静态类型编译语言的效率和安全性相结合的能力。随着 PayPal 对其系统进行现代化改造,对网络和多核计算的支持至关重要。Go 不仅提供了这种支持,而且提供的速度很快——在单台计算机上编译一个大型可执行文件最多需要几秒钟。

PayPal 目前有 100 多名 Go 开发人员,未来选择采用 Go 的开发人员将更容易获得该语言的批准,这要归功于公司已经在生产中的许多成功实现。

最重要的是,PayPal 开发人员使用 Go 提高了他们的生产力。Go 的并发机制使得编写充分利用 PayPal 的多核和联网机器的程序变得很容易。使用 Go 的开发人员还受益于它可以快速编译为机器代码的事实,并且他们的应用程序获得了垃圾收集的便利和运行时反射的强大功能。

今天 PayPal 的第一类语言是 Java 和 Node,Go 主要用作基础设施语言。虽然 Go 可能永远不会在某些应用程序中取代 Node.js,但 Natarajan 正在推动让 Go 成为 PayPal 的第一类语言。

通过他的努力,PayPal 还在评估迁移到 Google Kubernetes Engine (GKE) 以加快其新产品的上市时间。GKE 是一个用于部署容器化应用程序的托管、生产就绪环境,并带来了 Google 在开发人员生产力、自动化操作和开源灵活性方面的最新创新。

对于 PayPal 而言,部署到 GKE 将使 PayPal 更容易部署、更新和管理其应用程序和服务,从而实现快速开发和迭代。此外,PayPal 会发现更容易运行机器学习、通用 GPU、高性能计算和其他受益于 GKE 支持的专用硬件加速器的工作负载。

对 PayPal 来说最重要的是,Go 开发和 GKE 的结合使公司能够轻松扩展以满足需求,因为 Kubernetes 自动扩展将使 PayPal 能够处理用户对服务不断增长的需求——在最重要的时候保持它们可用,然后在安静的时间来省钱。

Golang实现生产者和消费者

packagemain

import(

"fmt"

"sync"

)

//实现一个生产者和消费者

/*生产者产生数据添加到通道里面,消费者消费数据从通道里面

不带缓存实现

*/

funcmain(){

ch:=make(chanint)

varwgsync.WaitGroup

wg.Add(2)

goproducers(wg,ch)

goconsumer(wg,ch)

wg.Wait()

}

//生产者

funcproducers(wg*sync.WaitGroup,chchanint){

fori:=0;i10;i++{

fmt.Println("send:",i)

ch-i

}

close(ch)

wg.Done()

}

//消费者

funcconsumer(wg*sync.WaitGroup,chchanint){

forv:=rangech{

fmt.Println("recv:",v)

}

wg.Done()

}

���$�

Golang kafka简述和操作(sarama同步异步和消费组)

一、Kafka简述

1. 为什么需要用到消息队列

异步:对比以前的串行同步方式来说,可以在同一时间做更多的事情,提高效率;

解耦:在耦合太高的场景,多个任务要对同一个数据进行操作消费的时候,会导致一个任务的处理因为另一个任务对数据的操作变得及其复杂。

缓冲:当遇到突发大流量的时候,消息队列可以先把所有消息有序保存起来,避免直接作用于系统主体,系统主题始终以一个平稳的速率去消费这些消息。

2.为什么选择kafka呢?

这没有绝对的好坏,看个人需求来选择,我这里就抄了一段他人总结的的优缺点,可见原文

kafka的优点:

1.支持多个生产者和消费者2.支持broker的横向拓展3.副本集机制,实现数据冗余,保证数据不丢失4.通过topic将数据进行分类5.通过分批发送压缩数据的方式,减少数据传输开销,提高吞高量6.支持多种模式的消息7.基于磁盘实现数据的持久化8.高性能的处理信息,在大数据的情况下,可以保证亚秒级的消息延迟9.一个消费者可以支持多种topic的消息10.对CPU和内存的消耗比较小11.对网络开销也比较小12.支持跨数据中心的数据复制13.支持镜像集群

kafka的缺点:

1.由于是批量发送,所以数据达不到真正的实时2.对于mqtt协议不支持3.不支持物联网传感数据直接接入4.只能支持统一分区内消息有序,无法实现全局消息有序5.监控不完善,需要安装插件6.需要配合zookeeper进行元数据管理7.会丢失数据,并且不支持事务8.可能会重复消费数据,消息会乱序,可用保证一个固定的partition内部的消息是有序的,但是一个topic有多个partition的话,就不能保证有序了,需要zookeeper的支持,topic一般需要人工创建,部署和维护一般都比mq高

3. Golang 操作kafka

3.1. kafka的环境

网上有很多搭建kafka环境教程,这里就不再搭建,就展示一下kafka的环境,在kubernetes上进行的搭建,有需要的私我,可以发yaml文件

3.2. 第三方库

github.com/Shopify/sarama // kafka主要的库*github.com/bsm/sarama-cluster // kafka消费组

3.3. 消费者

单个消费者

funcconsumer(){varwg sync.WaitGroup  consumer, err := sarama.NewConsumer([]string{"172.20.3.13:30901"},nil)iferr !=nil{      fmt.Println("Failed to start consumer: %s", err)return}  partitionList, err := consumer.Partitions("test0")//获得该topic所有的分区iferr !=nil{      fmt.Println("Failed to get the list of partition:, ", err)return}forpartition :=rangepartitionList {      pc, err := consumer.ConsumePartition("test0",int32(partition), sarama.OffsetNewest)iferr !=nil{        fmt.Println("Failed to start consumer for partition %d: %s\n", partition, err)return}      wg.Add(1)gofunc(sarama.PartitionConsumer){//为每个分区开一个go协程去取值formsg :=rangepc.Messages() {//阻塞直到有值发送过来,然后再继续等待fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value))        }deferpc.AsyncClose()        wg.Done()      }(pc)  }  wg.Wait()}funcmain(){  consumer()}

消费组

funcconsumerCluster(){  groupID :="group-1"config := cluster.NewConfig()  config.Group.Return.Notifications =trueconfig.Consumer.Offsets.CommitInterval =1* time.Second  config.Consumer.Offsets.Initial = sarama.OffsetNewest//初始从最新的offset开始c, err := cluster.NewConsumer(strings.Split("172.20.3.13:30901",","),groupID, strings.Split("test0",","), config)iferr !=nil{      glog.Errorf("Failed open consumer: %v", err)return}deferc.Close()gofunc(c *cluster.Consumer){      errors := c.Errors()      noti := c.Notifications()for{select{caseerr := -errors:            glog.Errorln(err)case-noti:        }      }  }(c)formsg :=rangec.Messages() {      fmt.Printf("Partition:%d, Offset:%d, key:%s, value:%s\n", msg.Partition, msg.Offset,string(msg.Key),string(msg.Value))      c.MarkOffset(msg,"")//MarkOffset 并不是实时写入kafka,有可能在程序crash时丢掉未提交的offset}}funcmain(){goconsumerCluster()}

3.4. 生产者

同步生产者

packagemainimport("fmt""github.com/Shopify/sarama")funcmain(){  config := sarama.NewConfig()  config.Producer.RequiredAcks = sarama.WaitForAll//赋值为-1:这意味着producer在follower副本确认接收到数据后才算一次发送完成。config.Producer.Partitioner = sarama.NewRandomPartitioner//写到随机分区中,默认设置8个分区config.Producer.Return.Successes =truemsg := sarama.ProducerMessage{}  msg.Topic =`test0`msg.Value = sarama.StringEncoder("Hello World!")  client, err := sarama.NewSyncProducer([]string{"172.20.3.13:30901"}, config)iferr !=nil{      fmt.Println("producer close err, ", err)return}deferclient.Close()  pid, offset, err := client.SendMessage(msg)iferr !=nil{      fmt.Println("send message failed, ", err)return}  fmt.Printf("分区ID:%v, offset:%v \n", pid, offset)}

异步生产者

funcasyncProducer(){  config := sarama.NewConfig()  config.Producer.Return.Successes =true//必须有这个选项config.Producer.Timeout =5* time.Second  p, err := sarama.NewAsyncProducer(strings.Split("172.20.3.13:30901",","), config)deferp.Close()iferr !=nil{return}//这个部分一定要写,不然通道会被堵塞gofunc(p sarama.AsyncProducer){      errors := p.Errors()      success := p.Successes()for{select{caseerr := -errors:iferr !=nil{              glog.Errorln(err)            }case-success:        }      }  }(p)for{      v :="async: "+ strconv.Itoa(rand.New(rand.NewSource(time.Now().UnixNano())).Intn(10000))      fmt.Fprintln(os.Stdout, v)      msg := sarama.ProducerMessage{        Topic: topics,        Value: sarama.ByteEncoder(v),      }      p.Input() - msg      time.Sleep(time.Second *1)  }}funcmain(){goasyncProducer()select{      }}

3.5. 结果展示-

同步生产打印:

分区ID:0,offset:90

消费打印:

Partition:0,Offset:90,key:,value:Hello World!

异步生产打印:

async:7272async:7616async:998

消费打印:

Partition:0,Offset:91,key:,value:async:7272Partition:0,Offset:92,key:,value:async:7616Partition:0,Offset:93,key:,value:async:998

Go语言使用NSQ消息队列

重点提示:

这样我们就启动了一个 nsqd 的实例

编写一个消息生产者

nsq_single_product.go

编写一个消息消费者

nsq_single_consumer.go

添加第一个实例

添加第二个实例

消息生产者

nsq_cluster_product.go

消息消费者

nsq_cluster_consumer.go


新闻名称:go语言消费生产 生产者消费者模式
链接地址:http://scjbc.cn/article/docedhs.html

其他资讯