Python中描述符的案例分析-创新互联
创新互联www.cdcxhl.cn八线动态BGP香港云服务器提供商,新人活动买多久送多久,划算不套路!
创新互联专注于企业营销型网站建设、网站重做改版、张北网站定制设计、自适应品牌网站建设、H5响应式网站、成都做商城网站、集团公司官网建设、外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为张北等各大城市提供网站开发制作服务。不懂Python中描述符的案例分析?其实想解决这个问题也不难,下面让小编带着大家一起学习怎么去解决,希望大家阅读完这篇文章后大所收获。
描述符是一种在多个属性上重复利用同一个存取逻辑的方式,他能"劫持"那些本对于self.__dict__的操作。描述符通常是一种包含__get__、__set__、__delete__三种方法中至少一种的类,给人的感觉是「把一个类的操作托付与另外一个类」。静态方法、类方法、property都是构建描述符的类。
我们先看一个简单的描述符的例子:
class MyDescriptor(object): _value = '' def __get__(self, instance, klass): return self._value def __set__(self, instance, value): self._value = value.swapcase() class Swap(object): swap = MyDescriptor()
注意MyDescriptor要用新式类。调用一下:
In [1]: from descriptor_example import Swap In [2]: instance = Swap() In [3]: instance.swap # 没有报AttributeError错误,因为对swap的属性访问被描述符类重载了 Out[3]: '' In [4]: instance.swap = 'make it swap' # 使用__set__重新设置_value In [5]: instance.swap Out[5]: 'MAKE IT SWAP' In [6]: instance.__dict__ # 没有用到__dict__:被劫持了 Out[6]: {}
这就是描述符的威力。我们熟知的staticmethod、classmethod如果你不理解,那么看一下用Python实现的效果可能会更清楚了:
>>> class myStaticMethod(object): ... def __init__(self, method): ... self.staticmethod = method ... def __get__(self, object, type=None): ... return self.staticmethod ... >>> class myClassMethod(object): ... def __init__(self, method): ... self.classmethod = method ... def __get__(self, object, klass=None): ... if klass is None: ... klass = type(object) ... def newfunc(*args): ... return self.classmethod(klass, *args) ... return newfunc
在实际的生产项目中,描述符有什么用处呢?首先看MongoEngine中的Field的用法:
from mongoengine import * class Metadata(EmbeddedDocument): tags = ListField(StringField()) revisions = ListField(IntField()) class WikiPage(Document): title = StringField(required=True) text = StringField() metadata = EmbeddedDocumentField(Metadata)
有非常多的Field类型,其实它们的基类就是一个描述符,我简化下,大家看看实现的原理:
class BaseField(object): name = None def __init__(self, **kwargs): self.__dict__.update(kwargs) ... def __get__(self, instance, owner): return instance._data.get(self.name) def __set__(self, instance, value): ... instance._data[self.name] = value
很多项目的源代码看起来很复杂,在抽丝剥茧之后,其实原理非常简单,复杂的是业务逻辑。
接着我们再看Flask的依赖Werkzeug中的cached_property:
class _Missing(object): def __repr__(self): return 'no value' def __reduce__(self): return '_missing' _missing = _Missing() class cached_property(property): def __init__(self, func, name=None, doc=None): self.__name__ = name or func.__name__ self.__module__ = func.__module__ self.__doc__ = doc or func.__doc__ self.func = func def __set__(self, obj, value): obj.__dict__[self.__name__] = value def __get__(self, obj, type=None): if obj is None: return self value = obj.__dict__.get(self.__name__, _missing) if value is _missing: value = self.func(obj) obj.__dict__[self.__name__] = value return value
其实看类的名字就知道这是缓存属性的,看不懂没关系,用一下:
class Foo(object): @cached_property def foo(self): print 'Call me!' return 42
调用下:
In [1]: from cached_property import Foo ...: foo = Foo() ...: In [2]: foo.bar Call me! Out[2]: 42 In [3]: foo.bar Out[3]: 42
可以看到在从第二次调用bar方法开始,其实用的是缓存的结果,并没有真的去执行。
说了这么多描述符的用法。我们写一个做字段验证的描述符:
class Quantity(object): def __init__(self, name): self.name = name def __set__(self, instance, value): if value > 0: instance.__dict__[self.name] = value else: raise ValueError('value must be > 0') class Rectangle(object): height = Quantity('height') width = Quantity('width') def __init__(self, height, width): self.height = height self.width = width @property def area(self): return self.height * self.width
我们试一试:
In [1]: from rectangle import Rectangle In [2]: r = Rectangle(10, 20) In [3]: r.area Out[3]: 200 In [4]: r = Rectangle(-1, 20) --------------------------------------------------------------------------- ValueError Traceback (most recent call last)in () ----> 1 r = Rectangle(-1, 20) /Users/dongweiming/mp/2017-03-23/rectangle.py in __init__(self, height, width) 15 16 def __init__(self, height, width): ---> 17 self.height = height 18 self.width = width 19 /Users/dongweiming/mp/2017-03-23/rectangle.py in __set__(self, instance, value) 7 instance.__dict__[self.name] = value 8 else: ----> 9 raise ValueError('value must be > 0') 10 11 ValueError: value must be > 0
看到了吧,我们在描述符的类里面对传值进行了验证。ORM就是这么玩的!
但是上面的这个实现有个缺点,就是不太自动化,你看height = Quantity('height'),这得让属性和Quantity的name都叫做height,那么可不可以不用指定name呢?当然可以,不过实现的要复杂很多:
class Quantity(object): __counter = 0 def __init__(self): cls = self.__class__ prefix = cls.__name__ index = cls.__counter self.name = '_{}#{}'.format(prefix, index) cls.__counter += 1 def __get__(self, instance, owner): if instance is None: return self return getattr(instance, self.name) ... class Rectangle(object): height = Quantity() width = Quantity() ...
Quantity的name相当于类名+计时器,这个计时器每调用一次就叠加1,用此区分。有一点值得提一提,在__get__中的:
if instance is None: return self
在很多地方可见,比如之前提到的MongoEngine中的BaseField。这是由于直接调用Rectangle.height这样的属性时候会报AttributeError, 因为描述符是实例上的属性。
PS:这个灵感来自《Fluent Python》,书中还有一个我认为设计非常好的例子。就是当要验证的内容种类很多的时候,如何更好地扩展的问题。现在假设我们除了验证传入的值要大于0,还得验证不能为空和必须是数字(当然三种验证在一个方法中验证也是可以接受的,我这里就是个演示),我们先写一个abc的基类:
class Validated(abc.ABC): __counter = 0 def __init__(self): cls = self.__class__ prefix = cls.__name__ index = cls.__counter self.name = '_{}#{}'.format(prefix, index) cls.__counter += 1 def __get__(self, instance, owner): if instance is None: return self else: return getattr(instance, self.name) def __set__(self, instance, value): value = self.validate(instance, value) setattr(instance, self.name, value) @abc.abstractmethod def validate(self, instance, value): """return validated value or raise ValueError"""
现在新加一个检查类型,新增一个继承了Validated的、包含检查的validate方法的类就可以了:
class Quantity(Validated): def validate(self, instance, value): if value <= 0: raise ValueError('value must be > 0') return value class NonBlank(Validated): def validate(self, instance, value): value = value.strip() if len(value) == 0: raise ValueError('value cannot be empty or blank') return value
前面展示的描述符都是一个类,那么可不可以用函数来实现呢?也是可以的:
def quantity(): try: quantity.counter += 1 except AttributeError: quantity.counter = 0 storage_name = '_{}:{}'.format('quantity', quantity.counter) def qty_getter(instance): return getattr(instance, storage_name) def qty_setter(instance, value): if value > 0: setattr(instance, storage_name, value) else: raise ValueError('value must be > 0') return property(qty_getter, qty_setter)
感谢你能够认真阅读完这篇文章,希望小编分享Python中描述符的案例分析内容对大家有帮助,同时也希望大家多多支持创新互联,关注创新互联-成都网站建设公司行业资讯频道,遇到问题就找创新互联,详细的解决方法等着你来学习!
当前题目:Python中描述符的案例分析-创新互联
文章路径:http://scjbc.cn/article/ccsgsj.html